Back to Search Start Over

Formation of Nanocrystalline Cobalt Oxide-Decorated Graphene for Secondary Lithium-Air Battery and Its Catalytic Performance in Concentrated Alkaline Solutions

Authors :
Si-Han Peng
Hsin-Chun Lu
Shingjiang Jessie Lue
Source :
Nanomaterials, Nanomaterials, Vol 10, Iss 1122, p 1122 (2020), Volume 10, Issue 6
Publication Year :
2020

Abstract

A potent cathode catalyst of octahedral cobalt oxide (Co3O4) was synthesized onto graphene (GR) nanosheets via a two-step preparation method. The precursor cobalt solution reacted with GR during the initial hydrolysis step to form intermediates. A subsequent hydrothermal reaction promoted Co3O4 crystallinity with a crystalline size of 73 nm, resulting in octahedral particles of 100&ndash<br />300 nm in size. Scanning electron microscopy, Raman spectroscopy, and X-ray diffraction analysis confirmed the successful formation of the Co3O4/GR composite. This catalyst composite was sprayed onto a carbon cloth to form a cathode for the hybrid electrolyte lithium-air battery (HELAB). This catalyst demonstrated improved oxygen reduction and oxygen evolution capabilities. The HELAB containing this catalyst showed a higher discharge voltage and stable charge voltage, resulting in a 34% reduction in overall over-potential compared to that without the Co3O4/GR composite. The use of saturated LiOH in 11.6 M LiCl aqueous electrolyte at the cathode further reduced the over-potential by 0.5 V. It is proposed that the suppressed dissociation of LiOH expedites the charging reaction from un-dissociated LiOH. This Co3O4/GR composite is a promising bi-functional catalyst, suitable as a cathode material for a HELAB operating in high relative humidity and highly alkaline environment.

Details

ISSN :
20794991
Volume :
10
Issue :
6
Database :
OpenAIRE
Journal :
Nanomaterials (Basel, Switzerland)
Accession number :
edsair.doi.dedup.....e9d2b083335279ea906505e021b949bb