Back to Search Start Over

ORIGAMI: Mining Representative Orthogonal Graph Patterns

Authors :
Vineet Chaoji
M. Al Hasan
J. Besson
Saeed Salem
Mohammed J. Zaki
Rensselaer Polytechnic Institute (RPI)
Data Mining and Machine Learning (DM2L)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
IEEE Computer Society Press
Source :
ICDM, Seventh International Conference on Data Mining (ICDM'07), Seventh International Conference on Data Mining (ICDM'07), Oct 2007, Omaha, United States. pp.153-163, ⟨10.1109/ICDM.2007.45⟩
Publication Year :
2007
Publisher :
IEEE, 2007.

Abstract

International audience; In this paper, we introduce the concept of alpha-orthogonal patterns to mine a representative set of graph patterns. Intuitively, two graph patterns are alpha-orthogonal if their similarity is bounded above by alpha. Each alpha-orthogonal pattern is also a representative for those patterns that are at least beta similar to it. Given user defined alpha, beta in [0, 1], the goal is to mine an alpha-orthogonal, beta-representative set that minimizes the set of unrepresented patterns. We present ORIGAMI, an effective algorithm for mining the set of representative orthogonal patterns. ORIGAMI first uses a randomized algorithm to randomly traverse the pattern space, seeking previously unexplored regions, to return a set of maximal patterns. ORIGAMI then extracts an alpha-orthogonal, beta-representative set from the mined maximal patterns. We show the effectiveness of our algorithm on a number of real and synthetic datasets. In particular, we show that our method is able to extract high quality patterns even in cases where existing enumerative graph mining methods fail to do so.

Details

Database :
OpenAIRE
Journal :
Seventh IEEE International Conference on Data Mining (ICDM 2007)
Accession number :
edsair.doi.dedup.....e9d12cd9441c8724739bfa7a192eaad4