Back to Search Start Over

TerraSAR-X dual-pol time-series for mapping of wetland vegetation

Authors :
Samuel Corgne
Sébastien Rapinel
Eric Pottier
Julie Betbeder
Laurence Hubert-Moy
Littoral, Environnement, Télédétection, Géomatique (LETG - Rennes)
Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN)
Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN)
Université de Nantes (UN)-Université de Nantes (UN)
Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO)
Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE)
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Institut d'Électronique et des Technologies du numéRique (IETR)
Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)
This work was supported by the DIVA 3-AGRICONNECT program, the CNES and the DLR.
Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN)
Université de Rennes (UR)-Institut Ecologie et Environnement (INEE)
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Nantes Université (NU)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Source :
ISPRS Journal of Photogrammetry and Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 2015, 107, pp.90-98. ⟨10.1016/j.isprsjprs.2015.05.001⟩, ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107, pp.90-98. ⟨10.1016/j.isprsjprs.2015.05.001⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

International audience; Mapping vegetation formations at a fine scale is crucial for assessing wetland functions and for better landscape management. Identification and characterization of vegetation formations is generally conducted at a fine scale using ecological ground surveys, which are limited to small areas. While optical remotely sensed imagery is limited to cloud-free periods, SAR time-series are used more extensively for wetland mapping and characterization using the relationship between distribution of vegetation formations and flood duration. The aim of this study was to determine the optimal number and key dates of SAR images to be classified to map wetland vegetation formations at a 1:10,000 scale. A series of eight dual-polarization TerraSAR-X images (HH/VV) was acquired in 2013 during dry and wet seasons in temperate climate conditions. One polarimetric parameter was extracted first, the Shannon entropy, which varies with wetland flooding status and vegetation roughness. Classification runs of all the possible combinations of SAR images using different k (number of images) subsets were performed to determine the best combinations of the Shannon entropy images to identify wetland vegetation formations. The classification runs were performed using Support Vector Machine techniques and were then analyzed using the McNemar test to investigate significant differences in the accuracy of all classification runs based on the different image subsets. The results highlight the relevant periods (i.e. late winter, spring and beginning of summer) for mapping vegetation formations, in accordance with ecological studies. They also indicate that a relationship can be established between vegetation formations and hydrodynamic processes with a short time-series of satellite images (i.e. 5 dates). This study introduces a new approach for herbaceous wetland monitoring using SAR polarimetric imagery. This approach estimates the number and key dates required for wetland management (e.g. restoration) and biodiversity studies using remote sensing data.

Details

ISSN :
09242716
Volume :
107
Database :
OpenAIRE
Journal :
ISPRS Journal of Photogrammetry and Remote Sensing
Accession number :
edsair.doi.dedup.....e9c4b3e4176f952237d840b94e10ed90
Full Text :
https://doi.org/10.1016/j.isprsjprs.2015.05.001