Back to Search Start Over

Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE

Authors :
Adams, D. Q.
Alduino, C.
Alfonso, K.
Avignone, F. T.
Azzolini, O.
Bari, G.
Bellini, F.
Benato, G.
Beretta, M.
Biassoni, M.
Branca, A.
Brofferio, C.
Bucci, C.
Camilleri, J.
Caminata, A.
Campani, A.
Canonica, L.
Cao, X. G.
Capelli, S.
Cappelli, L.
Cardani, L.
Carniti, P.
Casali, N.
Celi, E.
Chiesa, D.
Clemenza, M.
Copello, S.
Cremonesi, O.
Creswick, R. J.
D'Addabbo, A.
Dafinei, I.
Dell'Oro, S.
Di Domizio, S.
Dompe', V.
Fang, D. Q.
Fantini, G.
Faverzani, M.
Ferri, E.
Ferroni, F.
Fiorini, E.
Franceschi, M. A.
Freedman, S. J.
Fu, S. H.
Fujikawa, B. K.
Giachero, A.
Gironi, L.
Giuliani, A.
Gorla, P.
Gotti, C.
Gutierrez, T. D.
Han, K.
Hansen, E. V.
Heeger, K. M.
Huang, R. G.
Huang, H. Z.
Johnston, J.
Keppel, G.
Kolomensky, Yu. G.
Ligi, C.
Liu, R.
Ma, L.
Ma, Y. G.
Marini, L.
Maruyama, R. H.
Mayer, D.
Mei, Y.
Moggi, N.
Morganti, S.
Napolitano, T.
Nastasi, M.
Nikkel, J.
Nones, C.
Norman, E. B.
Nucciotti, A.
Nutini, I.
O'Donnell, T.
Ouellet, J. L.
Pagan, S.
Pagliarone, C. E.
Pagnanini, L.
Pallavicini, M.
Pattavina, L.
Pavan, M.
Pessina, G.
Pettinacci, V.
Pira, C.
Pirro, S.
Pozzi, S.
Previtali, E.
Puiu, A.
Rosenfeld, C.
Rusconi, C.
Sakai, M.
Sangiorgio, S.
Schmidt, B.
Scielzo, N. D.
Sharma, V.
Singh, V.
Sisti, M.
Speller, D.
Surukuchi, P. T.
Taffarello, L.
Terranova, F.
Tomei, C.
Vetter, K. J.
Vignati, M.
Wagaarachchi, S. L.
Wang, B. S.
Welliver, B.
Wilson, J.
Wilson, K.
Winslow, L. A.
Zimmermann, S.
Zucchelli, S.
D. Q. Adam
C. Alduino
K. Alfonso
F. T. Avignone
O. Azzolini
G. Bari
F. Bellini
G. Benato
M. Beretta
M. Biassoni
A. Branca
C. Brofferio
C. Bucci
J. Camilleri
A. Caminata
A. Campani
L. Canonica
X. G. Cao
S. Capelli
L. Cappelli
L. Cardani
P. Carniti
N. Casali
E. Celi
D. Chiesa
M. Clemenza
S. Copello
O. Cremonesi
R. J. Creswick
A. D???Addabbo
I. Dafinei
S. Dell???Oro
S. Di Domizio
V. Domp??
D. Q. Fang
G. Fantini
M. Faverzani
E. Ferri
F. Ferroni
E. Fiorini
M. A. Franceschi
S. J. Freedman
S. H. Fu
B. K. Fujikawa
A. Giachero
L. Gironi
A. Giuliani
P. Gorla
C. Gotti
T. D. Gutierrez
K. Han
E. V. Hansen
K. M. Heeger
R. G. Huang
H. Z. Huang
J. Johnston
G. Keppel
Yu. G. Kolomensky
C. Ligi
R. Liu
L. Ma
Y. G. Ma
L. Marini
R. H. Maruyama
D. Mayer
Y. Mei
N. Moggi
S. Morganti
T. Napolitano
M. Nastasi
J. Nikkel
C. None
E. B. Norman
A. Nucciotti
I. Nutini
T. O???Donnell
J. L. Ouellet
S. Pagan
C. E. Pagliarone
L. Pagnanini
M. Pallavicini
L. Pattavina
M. Pavan
G. Pessina
V. Pettinacci
C. Pira
S. Pirro
S. Pozzi
E. Previtali
A. Puiu
C. Rosenfeld
C. Rusconi
M. Sakai
S. Sangiorgio
B. Schmidt
N. D. Scielzo
V. Sharma
V. Singh
M. Sisti
D. Speller
P. T. Surukuchi
L. Taffarello
F. Terranova
C. Tomei
K. J. Vetter
M. Vignati
S. L. Wagaarachchi
B. S. Wang
B. Welliver
J. Wilson
K. Wilson
L. A. Winslow
S. Zimmermann
S. Zucchelli
Adams, D
Alduino, C
Alfonso, K
Avignone, F
Azzolini, O
Bari, G
Bellini, F
Benato, G
Beretta, M
Biassoni, M
Branca, A
Brofferio, C
Bucci, C
Camilleri, J
Caminata, A
Campani, A
Canonica, L
Cao, X
Capelli, S
Cappelli, L
Cardani, L
Carniti, P
Casali, N
Celi, E
Chiesa, D
Clemenza, M
Copello, S
Cremonesi, O
Creswick, R
D'Addabbo, A
Dafinei, I
Dell'Oro, S
Di Domizio, S
Dompe, V
Fang, D
Fantini, G
Faverzani, M
Ferri, E
Ferroni, F
Fiorini, E
Franceschi, M
Freedman, S
Fu, S
Fujikawa, B
Giachero, A
Gironi, L
Giuliani, A
Gorla, P
Gotti, C
Gutierrez, T
Han, K
Hansen, E
Heeger, K
Huang, R
Huang, H
Johnston, J
Keppel, G
Kolomensky, Y
Ligi, C
Liu, R
Ma, L
Ma, Y
Marini, L
Maruyama, R
Mayer, D
Mei, Y
Moggi, N
Morganti, S
Napolitano, T
Nastasi, M
Nikkel, J
Nones, C
Norman, E
Nucciotti, A
Nutini, I
O'Donnell, T
Ouellet, J
Pagan, S
Pagliarone, C
Pagnanini, L
Pallavicini, M
Pattavina, L
Pavan, M
Pessina, G
Pettinacci, V
Pira, C
Pirro, S
Pozzi, S
Previtali, E
Puiu, A
Rosenfeld, C
Rusconi, C
Sakai, M
Sangiorgio, S
Schmidt, B
Scielzo, N
Sharma, V
Singh, V
Sisti, M
Speller, D
Surukuchi, P
Taffarello, L
Terranova, F
Tomei, C
Vetter, K
Vignati, M
Wagaarachchi, S
Wang, B
Welliver, B
Wilson, J
Wilson, K
Winslow, L
Zimmermann, S
Zucchelli, S
Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
CUORE
Source :
Nature, Nature, 2022, 604 (7904), pp.53-58. ⟨10.1038/s41586-022-04497-4⟩
Publication Year :
2022

Abstract

The CUORE experiment finds no evidence for neutrinoless double beta decay after operating a large cryogenic TeO$_{2}$ calorimeter stably for several years in an extreme low-radiation environment at a temperature of 10 millikelvin. AbstractThe possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 19371. Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis2, the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0νββ) decay. Here we show results from the search for 0νββ decay of 130Te, using the latest advanced cryogenic calorimeters with the CUORE experiment3. CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0νββ decay and set a lower bound of the process half-life as 2.2 × 1025 years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment. The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937. Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter-antimatter asymmetry of the universe via leptogenesis, the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta ($0 \nu \beta \beta$) decay. Here we show results from the search for $0 \nu \beta \beta$ decay of $^{130}$Te, using the latest advanced cryogenic calorimeters with the CUORE experiment. CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultra-low temperatures, operational longevity, and the low levels of ionising radiation emanating from the cryogenic infrastructure. We find no evidence for $0 \nu \beta \beta$ decay and set a lower bound of $T_{1/2}^{0 \nu} > 2.2 \times 10^{25}$ years at a 90% credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultra-low temperature cryogenic environment.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature, Nature, 2022, 604 (7904), pp.53-58. ⟨10.1038/s41586-022-04497-4⟩
Accession number :
edsair.doi.dedup.....e9ae00669ceda65705fd041ce0f0110f