Back to Search Start Over

Pricing without martingale measure

Authors :
Laurence Carassus
Julien Baptiste
Emmanuel Lépinette
Université Paris sciences et lettres (PSL)
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Publication Year :
2018

Abstract

For several decades, the no-arbitrage (NA) condition and the martingale measures have played a major role in the financial asset's pricing theory. We propose a new approach for estimating the super-replication cost based on convex duality instead of martingale measures duality: Our prices will be expressed using Fenchel conjugate and bi-conjugate. The super-hedging problem leads endogenously to a weak condition of NA called Absence of Immediate Profit (AIP). We propose several characterizations of AIP and study the relation with the classical notions of no-arbitrage. We also give some promising numerical illustrations.<br />33 pages 6 figures

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e98e03a65ceabfa3c1cb17048b5524e8