Back to Search
Start Over
A Giant Planet Candidate Transiting a White Dwarf
- Source :
- Vanderburg, A, Rappaport, S A, Xu, S, Crossfield, I J M, Becker, J C, Gary, B, Murgas, F, Blouin, S, Kaye, T G, Palle, E, Melis, C, Morris, B M, Kreidberg, L, Gorjian, V, Morley, C V, Mann, A W, Parviainen, H, Pearce, L A, Newton, E R, Carrillo, A, Zuckerman, B, Nelson, L, Zeimann, G, Brown, W R, Tronsgaard, R, Klein, B, Ricker, G R, Vanderspek, R K, Latham, D W, Seager, S, Winn, J N, Jenkins, J M, Adams, F C, Benneke, B, Berardo, D, Buchhave, L A, Caldwell, D A, Christiansen, J L, Collins, K A, Colón, K D, Daylan, T, Doty, J, Doyle, A E, Dragomir, D, Dressing, C, Dufour, P, Fukui, A, Glidden, A, Guerrero, N M, Guo, X, Heng, K, Henriksen, A I, Huang, C X, Kaltenegger, L, Kane, S R, Lewis, J A, Lissauer, J J, Morales, F, Narita, N, Pepper, J, Rose, M E, Smith, J C, Stassun, K G & Yu, L 2020, ' A giant planet candidate transiting a white dwarf ', Nature, vol. 585, pp. 363-367 . https://doi.org/10.1038/s41586-020-2713-y, arXiv
- Publication Year :
- 2020
- Publisher :
- arXiv, 2020.
-
Abstract
- Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.<br />Comment: 50 pages, 12 figures, 2 tables. Published in Nature on Sept. 17, 2020. The final authenticated version is available online at: https://www.nature.com/articles/s41586-020-2713-y
- Subjects :
- 010504 meteorology & atmospheric sciences
Red giant
530 Physics
Brown dwarf
FOS: Physical sciences
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
Jupiter
Planet
0103 physical sciences
Astrophysics::Solar and Stellar Astrophysics
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
0105 earth and related environmental sciences
Physics
Earth and Planetary Astrophysics (astro-ph.EP)
Multidisciplinary
520 Astronomy
Giant planet
White dwarf
Astronomy
500 Science
Astrophysics - Solar and Stellar Astrophysics
Terrestrial planet
Astrophysics::Earth and Planetary Astrophysics
Ice giant
Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Vanderburg, A, Rappaport, S A, Xu, S, Crossfield, I J M, Becker, J C, Gary, B, Murgas, F, Blouin, S, Kaye, T G, Palle, E, Melis, C, Morris, B M, Kreidberg, L, Gorjian, V, Morley, C V, Mann, A W, Parviainen, H, Pearce, L A, Newton, E R, Carrillo, A, Zuckerman, B, Nelson, L, Zeimann, G, Brown, W R, Tronsgaard, R, Klein, B, Ricker, G R, Vanderspek, R K, Latham, D W, Seager, S, Winn, J N, Jenkins, J M, Adams, F C, Benneke, B, Berardo, D, Buchhave, L A, Caldwell, D A, Christiansen, J L, Collins, K A, Colón, K D, Daylan, T, Doty, J, Doyle, A E, Dragomir, D, Dressing, C, Dufour, P, Fukui, A, Glidden, A, Guerrero, N M, Guo, X, Heng, K, Henriksen, A I, Huang, C X, Kaltenegger, L, Kane, S R, Lewis, J A, Lissauer, J J, Morales, F, Narita, N, Pepper, J, Rose, M E, Smith, J C, Stassun, K G & Yu, L 2020, ' A giant planet candidate transiting a white dwarf ', Nature, vol. 585, pp. 363-367 . https://doi.org/10.1038/s41586-020-2713-y, arXiv
- Accession number :
- edsair.doi.dedup.....e97e4399f18fef10bd1e453e17027414
- Full Text :
- https://doi.org/10.48550/arxiv.2009.07282