Back to Search
Start Over
Novel Biobjective Clustering (BiGC) Based on Cooperative Game Theory
- Source :
- IEEE Transactions on Knowledge and Data Engineering. 25:1070-1082
- Publication Year :
- 2013
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2013.
-
Abstract
- We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.
- Subjects :
- Clustering high-dimensional data
Mathematical optimization
Fuzzy clustering
Brown clustering
Computer science
Single-linkage clustering
Correlation clustering
Constrained clustering
k-means clustering
Computer Science Applications
Hierarchical clustering
Computational Theory and Mathematics
CURE data clustering algorithm
Consensus clustering
Canopy clustering algorithm
FLAME clustering
Cluster analysis
Computer Science & Automation
k-medians clustering
Information Systems
Subjects
Details
- ISSN :
- 10414347
- Volume :
- 25
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Knowledge and Data Engineering
- Accession number :
- edsair.doi.dedup.....e977d90b2b6c2c8a262449dbf83af9d6
- Full Text :
- https://doi.org/10.1109/tkde.2012.73