Back to Search Start Over

Fast Face Image Synthesis with Minimal Training

Authors :
Kevin W. Bowyer
Patrick J. Flynn
Sandipan Banerjee
Walter J. Scheirer
Source :
WACV
Publication Year :
2018

Abstract

We propose an algorithm to generate realistic face images of both real and synthetic identities (people who do not exist) with different facial yaw, shape and resolution.The synthesized images can be used to augment datasets to train CNNs or as massive distractor sets for biometric verification experiments without any privacy concerns. Additionally, law enforcement can make use of this technique to train forensic experts to recognize faces. Our method samples face components from a pool of multiple face images of real identities to generate the synthetic texture. Then, a real 3D head model compatible to the generated texture is used to render it under different facial yaw transformations. We perform multiple quantitative experiments to assess the effectiveness of our synthesis procedure in CNN training and its potential use to generate distractor face images. Additionally, we compare our method with popular GAN models in terms of visual quality and execution time.<br />To appear in IEEE WACV 2019. Get our data (2M face images of 12K synthetic subjects, 8K 3D head models) by accessing the "Notre Dame Synthetic Face Dataset" here: https://cvrl.nd.edu/projects/data/

Details

Language :
English
Database :
OpenAIRE
Journal :
WACV
Accession number :
edsair.doi.dedup.....e95fdf0af0ebf20b79f7d6bf372522a2