Back to Search Start Over

Spatially-Consistent Feature Matching and Learning for Heritage Image Analysis

Authors :
Xi Shen
Robin Champenois
Shiry Ginosar
Ilaria Pastrolin
Morgane Rousselot
Oumayma Bounou
Tom Monnier
Spyros Gidaris
François Bougard
Pierre-Guillaume Raverdy
Marie-Françoise Limon
Christine Bénévent
Marc Smith
Olivier Poncet
K. Bender
Béatrice Joyeux-Prunel
Elizabeth Honig
Alexei A. Efros
Mathieu Aubry
Laboratoire d'Informatique Gaspard-Monge (LIGM)
École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
University of California [Berkeley]
University of California
École nationale des chartes (ENC)
Université Paris sciences et lettres (PSL)
Models of visual object recognition and scene understanding (WILLOW)
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)
Valeo.ai
VALEO
Centre National de la Recherche Scientifique (CNRS)
Service Expérimentation et Développement [Paris] (SED)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Archives nationales
Université de Genève (UNIGE)
This work was supported in part by ANR project EnHerit ANR-17-CE23-0008, PSL Filigrane pour tous project, project Rapid Tabasco, gifts from Adobe to Ecole des Ponts.
ANR-17-CE23-0008,EnHerit,Exploitation des bases d'images patrimoniales(2017)
University of California [Berkeley] (UC Berkeley)
University of California (UC)
Centre Jean Mabillon (CJM)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Université de Genève = University of Geneva (UNIGE)
Source :
International Journal of Computer Vision, International Journal of Computer Vision, Springer Verlag, 2022, ⟨10.1007/s11263-022-01576-x⟩, International Journal of Computer Vision, 2022, ⟨10.1007/s11263-022-01576-x⟩
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

International audience; Progress in the digitization of cultural assets leads to online databases that become too large for a human to analyze. Moreover, some analyses might be challenging, even for experts. In this paper, we explore two applications of computer vision to analyze historical data: watermark recognition and one-shot repeated pattern detection in artwork collections. Both problems present computer vision challenges which we believe to be representative of the ones encountered in cultural heritage applications: limited supervision is available, the tasks are fine-grained recognition, and the data comes in several different modalities. Both applications are also highly practical, as recognizing watermarks makes it possible to date and locate documents, while detecting repeated patterns allows exploring visual links between artworks. We demonstrate on both tasks the benefits of relying on deep mid-level features. More precisely, we define an image similarity score based on geometric verification of mid-level features and show how spatial consistency can be used to fine-tune out-of-the-box features for the target dataset with weak or no supervision. This paper relates and extends our previous works. Our code and data are available at \url{http://imagine.enpc.fr/~shenx/HisImgAnalysis/}.

Details

ISSN :
15731405 and 09205691
Volume :
130
Database :
OpenAIRE
Journal :
International Journal of Computer Vision
Accession number :
edsair.doi.dedup.....e9389fb7d297f4218f63abcfbd5ebe6f
Full Text :
https://doi.org/10.1007/s11263-022-01576-x