Back to Search
Start Over
Mitochondrial SIRT3 Deficiency Results in Neuronal Network Hyperexcitability, Accelerates Age-Related Aβ Pathology, and Renders Neurons Vulnerable to Aβ Toxicity
- Source :
- Neuromolecular Med
- Publication Year :
- 2022
-
Abstract
- Aging is the major risk factor for Alzheimer’s disease (AD). Mitochondrial dysfunction and neuronal network hyperexcitability are two age-related alterations implicated in AD pathogenesis. We found that levels of the mitochondrial protein deacetylase sirtuin-3 (SIRT3) are significantly reduced, and consequently mitochondria protein acetylation is increased in brain cells during aging. SIRT3-deficient mice exhibit robust mitochondrial protein hyperacetylation and reduced mitochondrial mass during aging. Moreover, SIRT3-deficient mice exhibit epileptiform and burst-firing electroencephalogram activity indicating neuronal network hyperexcitability. Both aging and SIRT3 deficiency result in increased sensitivity to kainic acid-induced seizures. Exposure of cultured cerebral cortical neurons to amyloid β-peptide (Aβ) results in a reduction in SIRT3 levels and SIRT3-deficient neurons exhibit heightened sensitivity to Aβ toxicity. Finally, SIRT3 haploinsufficiency in middle-aged App/Ps1 double mutant transgenic mice results in a significant increase in Aβ load compared with App/Ps1 double mutant mice with normal SIRT3 levels. Collectively, our findings suggest that SIRT3 plays an important role in protecting neurons against Aβ pathology and excitotoxicity.
- Subjects :
- Cellular and Molecular Neuroscience
Neurology
Molecular Medicine
Article
Subjects
Details
- ISSN :
- 15591174
- Database :
- OpenAIRE
- Journal :
- Neuromolecular medicine
- Accession number :
- edsair.doi.dedup.....e911425b8418257f9faba30c64de40b5