Back to Search Start Over

Duality and General Equilibrium Theory Under Knightian Uncertainty

Authors :
Laurent Denis
Patrick Beissner
University of Canberra
Laboratoire Manceau de Mathématiques
Laboratoire Manceau de Mathématiques (LMM)
Le Mans Université (UM)-Le Mans Université (UM)
Projet PANORisk, région Pays de la Loire
ANR-15-CE05-0024,CAESARS,Contrôle et simulation des systèmes électriques, interaction et robustesse(2015)
Source :
SIAM Journal on Financial Mathematics. 9:381-400
Publication Year :
2018
Publisher :
Society for Industrial & Applied Mathematics (SIAM), 2018.

Abstract

Any dynamic or stochastic notion of a general equilibrium relies on the underlying commodity space. Under sole risk and without multiple–prior uncertainty the usual choice is a Lebesgue space from standard measure theory. In the case of volatility uncertainty it turns out that such a type of function space is no longer appropriate. For this reason we introduce and discuss a new natural commodity space, which can be constructed in three independent and equivalent ways. Each approach departs from one possible way to construct Lebesgue spaces. Moreover, we give a complete representation of the resulting topological dual space. This extends the classic Riesz representation in a natural way. Elements therein are the candidates for a linear equilibrium price system. This representation result has direct implications for the microeconomic foundation of finance under Knightian uncertainty.

Details

ISSN :
1945497X
Volume :
9
Database :
OpenAIRE
Journal :
SIAM Journal on Financial Mathematics
Accession number :
edsair.doi.dedup.....e8fe344005e563c53377ea1ba01dce89
Full Text :
https://doi.org/10.1137/17m1120877