Back to Search Start Over

The Differential Inclusion Modeling FISTA Algorithm and Optimality of Convergence Rate in the Case b<3

Authors :
Jean-François Aujol
Vassilis Apidopoulos
Charles Dossal
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
IUF
ANR-16-CE33-0010,GOTMI,Generalized Optimal Transport Models for Image processing(2016)
Source :
SIAM Journal on Optimization, SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2018, SIAM Journal on Optimization, 28 (1), pp.551-574. ⟨10.1137/17M1128642⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

In this paper we are interested in the differential inclusion $0\in \ddot{x}(t)+\frac{b}{t}\dot{x}(t)+\partial F(x(t))$ in a finite-dimensional Hilbert space $\mathbb{R}^{d}$, where $F$ is a proper, convex, lower semicontinuous function. The motivation of this study is that the differential inclusion models the FISTA algorithm as considered in [A. Chambolle and C. Dossal, J. Optim. Theory Appl., 166 (2015), pp. 968--982]. In particular, we investigate the different asymptotic properties of solutions for this inclusion for $b&gt;0$. We show that the convergence rate of $F(x(t))$ towards the minimum of $F$ is of order of $O\mathopen{}(t^{-\frac{2b}{3}})$ when $0 3$ this order is of $o\mathopen{}({t^{-2}})$ and the solution-trajectory converges to a minimizer of $F$. These results generalize the ones obtained in the differential setting (where $F$ is differentiable) in [H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont, Math. Program., 2016, pp. 1--53], [H. Attouch, Z. Chbani, and H. Riahi,...

Details

Language :
English
ISSN :
10526234
Database :
OpenAIRE
Journal :
SIAM Journal on Optimization, SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2018, SIAM Journal on Optimization, 28 (1), pp.551-574. ⟨10.1137/17M1128642⟩
Accession number :
edsair.doi.dedup.....e8bc592aaa97b8604303f290376ec53c
Full Text :
https://doi.org/10.1137/17M1128642⟩