Back to Search Start Over

On the complexity of the shortest-path broadcast problem

Authors :
Hovhannes A. Harutyunyan
Pierluigi Crescenzi
Geppino Pucci
Andrea Pietracaprina
Pierre Fraigniaud
Chiara Pierucci
Magnús M. Halldórsson
Université de Florence
Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
Networks, Graphs and Algorithms (GANG)
Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243))
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
School of Computer Science [Reykjavik]
Reykjavík University
Concordia University [Montreal]
Universita degli Studi di Padova
ANR-11-BS02-0014,DISPLEXITY,Calculabilité et complexité en distribué(2011)
Università degli Studi di Firenze = University of Florence (UniFI)
Università degli Studi di Padova = University of Padua (Unipd)
Università degli Studi di Firenze [Firenze]
ANR-11-BS02-014,DISPLEXITY,Calculabilité et complexité en distribué(2011)
Source :
Discrete Applied Mathematics, Discrete Applied Mathematics, Elsevier, 2016, 199, pp.101-109. ⟨10.1016/j.dam.2015.05.004⟩, Discrete Applied Mathematics, 2016, 199, pp.101-109. ⟨10.1016/j.dam.2015.05.004⟩
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

International audience; We study the shortest-path broadcast problem in graphs and digraphs, where a message has to be transmitted from a source node s to all the nodes along shortest paths, in the classical telephone model. For both graphs and digraphs, we show that the problem is equivalent to the broadcast problem in layered directed graphs. We then prove that this latter problem is NP-hard, and therefore that the shortest-path broadcast problem is NP-hard in graphs as well as in digraphs. Nevertheless, we prove that a simple polynomial-time algorithm, called MDST-broadcast, based on min-degree spanning trees, approximates the optimal broadcast time within a multiplicative factor 3/2 in 3-layer digraphs, and O(log n/loglog n) in arbitrary multi-layer digraphs. As a consequence, one can approximate the optimal shortest-path broadcast time in polynomial time within a multiplicative factor 3/2 whenever the source has eccentricity at most 2, and within a multiplicative factor O(log n/\log\log n) in the general case, for both graphs and digraphs. The analysis of MDST-broadcast is tight, as we prove that this algorithm cannot approximate the optimal broadcast time within a factor smaller than Omega(log n/log\log n).

Details

ISSN :
0166218X
Volume :
199
Database :
OpenAIRE
Journal :
Discrete Applied Mathematics
Accession number :
edsair.doi.dedup.....e8b301227bdb203793e96d34370995f5