Back to Search Start Over

Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

Authors :
Yue Zhao
Shihong Tian
Kejun Hou
Yang Dan
Zengqian Hou
Zhiming Yang
Qiang Fu
Source :
Scientific Reports
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.

Details

ISSN :
20452322
Volume :
5
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....e8a0e930c2adce6a3f577f31f6d7b146
Full Text :
https://doi.org/10.1038/srep13812