Back to Search Start Over

Upregulation of Protein Synthesis and Proteasome Degradation Confers Sensitivity to Proteasome Inhibitor Bortezomib in Myc-Atypical Teratoid/Rhabdoid Tumors

Authors :
Yun Ru Liu
Feng Chi Chang
Muh Lii Liang
Shih-Chieh Lin
Wen Chang Huang
Tsung Han Hsieh
Donald Ming-Tak Ho
Kevin Li Chun Hsieh
Hsin Hung Chen
Meng En Chao
Huy Minh Tran
Yi Yen Lee
Yen Lin Liu
Wan Chen
Chun A. Changou
Che Chang Chang
Min Lan Tsai
Shian Ying Sung
Tai-Tong Wong
Kuo Sheng Wu
Hsin Lun Lee
Alice L. Yu
Yun Yen
Shing Shung Chu
Source :
Cancers, Volume 12, Issue 3, Cancers, vol 12, iss 3, Cancers, Vol 12, Iss 3, p 752 (2020)
Publication Year :
2020
Publisher :
Multidisciplinary Digital Publishing Institute, 2020.

Abstract

Atypical teratoid rhabdoid tumors (ATRTs) are among the most malignant brain tumors in early childhood and remain incurable. Myc-ATRT is driven by the Myc oncogene, which directly controls the intracellular protein synthesis rate. Proteasome inhibitor bortezomib (BTZ) was approved by the Food and Drug Administration as a primary treatment for multiple myeloma. This study aimed to determine whether the upregulation of protein synthesis and proteasome degradation in Myc-ATRTs increases tumor cell sensitivity to BTZ. We performed differential gene expression and gene set enrichment analysis on matched primary and recurrent patient-derived xenograft (PDX) samples from an infant with ATRT. Concomitant upregulation of the Myc pathway, protein synthesis and proteasome degradation were identified in recurrent ATRTs. Additionally, we found the proteasome-encoding genes were highly expressed in ATRTs compared with in normal brain tissues, correlated with the malignancy of tumor cells and were essential for tumor cell survival. BTZ inhibited proliferation and induced apoptosis through the accumulation of p53 in three human Myc-ATRT cell lines (PDX-derived tumor cell line Re1-P6, BT-12 and CHLA-266). Furthermore, BTZ inhibited tumor growth and prolonged survival in Myc-ATRT orthotopic xenograft mice. Our findings suggest that BTZ may be a promising targeted therapy for Myc-ATRTs.

Details

Language :
English
ISSN :
20726694
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....e8996082f141ec93820b59a203e75680
Full Text :
https://doi.org/10.3390/cancers12030752