Back to Search
Start Over
Lagrangian submanifolds and Lefschetz pencils
- Source :
- J. Symplectic Geom. 3, no. 2 (2005), 171-219, Digital.CSIC. Repositorio Institucional del CSIC, instname
- Publication Year :
- 2005
- Publisher :
- International Press of Boston, 2005.
-
Abstract
- Given a Lagrangian submanifold in a symplectic manifold and a Morse function on the submanifold, we show that there is an isotopic Morse function and a symplectic Lefschetz pencil on the manifold extending the Morse function to the whole manifold. From this construction we define a sequence of symplectic invariants classifying the isotopy classes of Lagrangian spheres in a symplectic 4-manifold.
- Subjects :
- Mathematics - Differential Geometry
Pure mathematics
Lefschetz pencil
01 natural sciences
0103 physical sciences
FOS: Mathematics
0101 mathematics
Symplectomorphism
Moment map
Mathematics::Symplectic Geometry
Circle-valued Morse theory
Symplectic manifold
Mathematics
010102 general mathematics
Mathematical analysis
53D12
53D35
Symplectic representation
Mathematics::Geometric Topology
Symplectic
Differential Geometry (math.DG)
Floer homology
Mathematics - Symplectic Geometry
Lagrangian submanifold
Symplectic Geometry (math.SG)
010307 mathematical physics
Geometry and Topology
Mathematics::Differential Geometry
Symplectic geometry
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J. Symplectic Geom. 3, no. 2 (2005), 171-219, Digital.CSIC. Repositorio Institucional del CSIC, instname
- Accession number :
- edsair.doi.dedup.....e85fba898021d9eda28f19422ca8c019