Back to Search
Start Over
Systemically Delivered Adipose Stromal Vascular Fraction Cells Disseminate to Peripheral Artery Walls and Reduce Vasomotor Tone Through a CD11b+ Cell-Dependent Mechanism
- Source :
- Stem Cells Translational Medicine. 4:369-380
- Publication Year :
- 2015
- Publisher :
- Oxford University Press (OUP), 2015.
-
Abstract
- Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure-dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b+ cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b+ cell being the relevant cell type, SVF-derived F4/80-positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b+ cell-dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide-dependent mechanism that required CD11b+ cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement.
- Subjects :
- Cell type
Pathology
medicine.medical_specialty
Adipose tissue
Cell therapy
Mice
Adventitia
Adipocytes
medicine
Animals
Macrophage
Enabling Technologies for Cell-Based Clinical Translation
CD11b Antigen
Vasomotor
business.industry
Macrophages
Arteries
Cell Biology
General Medicine
Anatomy
Stromal vascular fraction
Vasomotor System
medicine.anatomical_structure
Adipose Tissue
Stromal Cells
business
Developmental Biology
Artery
Subjects
Details
- ISSN :
- 21576580 and 21576564
- Volume :
- 4
- Database :
- OpenAIRE
- Journal :
- Stem Cells Translational Medicine
- Accession number :
- edsair.doi.dedup.....e81f61573aeb607515cf12cbeb3029af
- Full Text :
- https://doi.org/10.5966/sctm.2014-0252