Back to Search Start Over

Systemically Delivered Adipose Stromal Vascular Fraction Cells Disseminate to Peripheral Artery Walls and Reduce Vasomotor Tone Through a CD11b+ Cell-Dependent Mechanism

Authors :
Jacob R. Dale
Chin K. Ng
James B. Hoying
Amanda J. LeBlanc
Marvin E. Morris
Huaiyu Zheng
Robert M. Reed
Stuart K. Williams
Jason E. Beare
Christina L. Kaufman
Source :
Stem Cells Translational Medicine. 4:369-380
Publication Year :
2015
Publisher :
Oxford University Press (OUP), 2015.

Abstract

Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure-dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b+ cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b+ cell being the relevant cell type, SVF-derived F4/80-positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b+ cell-dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide-dependent mechanism that required CD11b+ cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement.

Details

ISSN :
21576580 and 21576564
Volume :
4
Database :
OpenAIRE
Journal :
Stem Cells Translational Medicine
Accession number :
edsair.doi.dedup.....e81f61573aeb607515cf12cbeb3029af
Full Text :
https://doi.org/10.5966/sctm.2014-0252