Back to Search Start Over

Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1

Authors :
Preeti Goyal
Matthew C. Lorincz
Danny Leung
Wei Xie
Tingting Du
Keith E. Szulwach
Yujing Li
Peng Jin
Bing Ren
Ulrich Wagner
Ah Young Lee
Source :
Proceedings of the National Academy of Sciences. 111:6690-6695
Publication Year :
2014
Publisher :
Proceedings of the National Academy of Sciences, 2014.

Abstract

During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.

Details

ISSN :
10916490 and 00278424
Volume :
111
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....e81ba8d7b1427ac2d3bb0d0c1dca876b