Back to Search Start Over

Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

Authors :
Hui Wu
Guofan Jin
Hongjun Zhang
Peixun Fan
Minlin Zhong
Benfeng Bai
Source :
Nanoscale. 8:14617-14624
Publication Year :
2016
Publisher :
Royal Society of Chemistry (RSC), 2016.

Abstract

Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

Details

ISSN :
20403372 and 20403364
Volume :
8
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi.dedup.....e808bd2e2f019f8ac7196454b897ded0