Back to Search Start Over

Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib

Authors :
Hyunjin Shin
Bin Li
Olga Pustovalova
David Merberg
Andrew Hope
Marina Bessarabova
Elona Kolpakova-Hart
Andrew Dorner
Georgy Gulbekyan
Matthew Schu
Yuri Nikolsky
William L. Trepicchio
Source :
PLoS ONE, PLoS ONE, Vol 10, Iss 6, p e0130700 (2015)
Publication Year :
2014

Abstract

Development of drug responsive biomarkers from pre-clinical data is a critical step in drug discovery, as it enables patient stratification in clinical trial design. Such translational biomarkers can be validated in early clinical trial phases and utilized as a patient inclusion parameter in later stage trials. Here we present a study on building accurate and selective drug sensitivity models for Erlotinib or Sorafenib from pre-clinical in vitro data, followed by validation of individual models on corresponding treatment arms from patient data generated in the BATTLE clinical trial. A Partial Least Squares Regression (PLSR) based modeling framework was designed and implemented, using a special splitting strategy and canonical pathways to capture robust information for model building. Erlotinib and Sorafenib predictive models could be used to identify a sub-group of patients that respond better to the corresponding treatment, and these models are specific to the corresponding drugs. The model derived signature genes reflect each drug’s known mechanism of action. Also, the models predict each drug’s potential cancer indications consistent with clinical trial results from a selection of globally normalized GEO expression datasets.

Details

ISSN :
19326203
Volume :
10
Issue :
6
Database :
OpenAIRE
Journal :
PloS one
Accession number :
edsair.doi.dedup.....e807e7e641f06a1b670ad1f5417d853a