Back to Search
Start Over
Bioinspired fiber-regulated composite with tunable permanent shape and shape memory properties via 3d magnetic printing
- Source :
- Ren, L, Li, B, Song, Z, Liu, Q, Ren, L & Zhou, X 2019, ' Bioinspired fiber-regulated composite with tunable permanent shape and shape memory properties via 3D magnetic printing ', Composites. Part B: Engineering, vol. 164, pp. 458-466 . https://doi.org/10.1016/j.compositesb.2019.01.061
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Shape memory polymers (SMPs) generally change shape from a temporary state to a permanent state, and the permanent shape is only determined by its initial form, which leads to the lack of design freedom for SMPs. In order to enrich morphing behavior and extend applications of SMPs, bioinspired design and fabrication methods need to be developed. Many biological dynamic materials enable shape changes ranging from bending, twisting to spiraling using site-specific aligned cellulose microfibers orientations. Here, we proposed an approach integrating bioinspired fiber architectures and varying 3D printing parameters into SMPs, to achieve tunable permanent shape and shape memory properties. The self-folded flower and sequentially deployed smart robotic hand have been developed to demonstrate the feasibility of our method. The proposed bioinspired SMPs, which is rarely seen in the previous reports, have intriguing fundamental properties and hold great potential for applications in soft actuators, smart textiles, wearable equipment, medical devices, and other intelligent apparatus.
- Subjects :
- business.product_category
Materials science
Bending (metalworking)
business.industry
Mechanical Engineering
3D printing
Wearable computer
Nanotechnology
02 engineering and technology
Shape-memory alloy
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Industrial and Manufacturing Engineering
0104 chemical sciences
Morphing
Shape-memory polymer
Mechanics of Materials
Microfiber
Ceramics and Composites
Composite material
0210 nano-technology
business
Actuator
ComputingMethodologies_COMPUTERGRAPHICS
Subjects
Details
- ISSN :
- 13598368
- Volume :
- 164
- Database :
- OpenAIRE
- Journal :
- Composites Part B: Engineering
- Accession number :
- edsair.doi.dedup.....e7d9faf2e4307130e2595873a9af7cd2