Back to Search
Start Over
NiMoO4@Co3O4 Core-Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction
- Source :
- Advanced energy materials, 11 (2021). doi:10.1002/aenm.202101324, info:cnr-pdr/source/autori:Solomon, Getachew; Landström, Anton; Mazzaro, Raffaello; Jugovac, Matteo; Moras, Paolo; Cattaruzza, Elti; Morandi, Vittorio; Concina, Isabella; Vomiero, Alberto/titolo:NiMoO4<%2Finf>@Co3<%2Finf>O4<%2Finf> Core-Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction/doi:10.1002%2Faenm.202101324/rivista:Advanced energy materials (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:11, Advanced Energy Materials
- Publication Year :
- 2021
- Publisher :
- Wiley-VCH, Weinheim , Germania, 2021.
-
Abstract
- The sluggish kinetics of the oxygen evolution reaction (OER) is the bottleneck for the practical exploitation of water splitting. Here, the potential of a core–shell structure of hydrous NiMoO4 microrods conformally covered by Co3O4 nanoparticles via atomic layer depositions is demonstrated. In situ Raman and synchrotron-based photoemission spectroscopy analysis confirms the leaching out of Mo facilitates the catalyst reconstruction, and it is one of the centers of active sites responsible for higher catalytic activity. Post OER characterization indicates that the leaching of Mo from the crystal structure, induces the surface of the catalyst to become porous and rougher, hence facilitating the penetration of the electrolyte. The presence of Co3O4 improves the onset potential of the hydrated catalyst due to its higher conductivity, confirmed by the shift in the Fermi level of the heterostructure. In particular NiMoO4@Co3O4 shows a record low overpotential of 120mV at a current density of 10mAcm−2, sustaining a remarkable performance operating at a constant current density of 10, 50, and 100mAcm−2 with negligible decay. Presented outcomes can significantly contribute to the practical use of the water-splitting process, by offering a clear and in-depth understanding of the preparation of a robust and efficient catalyst for water-splitting.
- Subjects :
- In situ
Materials science
Settore ING-IND/22 - Scienza e Tecnologia dei Materiali
Kinetics
core–shell structure
02 engineering and technology
hydrous catalysts
010402 general chemistry
01 natural sciences
electrocatalysts
water splitting
Catalysis
Atomic layer deposition
electrocatalyst
core-shell structure
General Materials Science
Renewable Energy, Sustainability and the Environment
Settore FIS/01 - Fisica Sperimentale
Oxygen evolution
021001 nanoscience & nanotechnology
atomic layer deposition
oxygen evolution reaction
0104 chemical sciences
Experimental physics
Chemical engineering
Water splitting
Nanorod
hydrous catalyst
0210 nano-technology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Advanced energy materials, 11 (2021). doi:10.1002/aenm.202101324, info:cnr-pdr/source/autori:Solomon, Getachew; Landström, Anton; Mazzaro, Raffaello; Jugovac, Matteo; Moras, Paolo; Cattaruzza, Elti; Morandi, Vittorio; Concina, Isabella; Vomiero, Alberto/titolo:NiMoO4<%2Finf>@Co3<%2Finf>O4<%2Finf> Core-Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction/doi:10.1002%2Faenm.202101324/rivista:Advanced energy materials (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:11, Advanced Energy Materials
- Accession number :
- edsair.doi.dedup.....e7ad6f99eac4fe8685b6e162a0290ed3