Back to Search Start Over

Internal and subspace correction approximations of implicit variational inequalities

Authors :
Lori Badea
Marius Cocou
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Matériaux et Structures (M&S)
Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA )
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Européen Associé CNRS Franco-Roumain de Mathématiques et Modélisation LEA Math-Mode
Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
Source :
Mathematics and Mechanics of Solids, Mathematics and Mechanics of Solids, 2015, 20 (9), pp. 1026-1048/DOI: 10.1177/1081286513514075. ⟨10.1177/1081286513514075⟩, Mathematics and Mechanics of Solids, SAGE Publications, 2015, 20 (9), pp. 1026-1048/DOI: 10.1177/1081286513514075. ⟨10.1177/1081286513514075⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; The aim of this paper is to study the existence of solutions and some approximations for a class of implicit evolution variational inequalities that represents a generalization of several quasistatic contact problems in elasticity. Using appropriate estimates for the incremental solutions, the existence of a continuous solution and convergence results are proved for some corresponding internal approximation and backward difference scheme. To solve the fully discrete problems, general additive subspace correction algorithms are considered, for which global convergence is proved and some error estimates are established.

Details

Language :
English
ISSN :
10812865
Database :
OpenAIRE
Journal :
Mathematics and Mechanics of Solids, Mathematics and Mechanics of Solids, 2015, 20 (9), pp. 1026-1048/DOI: 10.1177/1081286513514075. ⟨10.1177/1081286513514075⟩, Mathematics and Mechanics of Solids, SAGE Publications, 2015, 20 (9), pp. 1026-1048/DOI: 10.1177/1081286513514075. ⟨10.1177/1081286513514075⟩
Accession number :
edsair.doi.dedup.....e7ac1b76b35dab38f1930efd26ec8758
Full Text :
https://doi.org/10.1177/1081286513514075.