Back to Search Start Over

What population reveals about individual cell identity: Single-cell parameter estimation of models of gene expression in yeast

Authors :
Cristian Versari
Pascal Hersen
Giancarlo Ferrari-Trecate
Eugenio Cinquemani
Andrés M. González-Vargas
Gregory Batt
Artémis Llamosi
Computational systems biology and optimization (Lifeware)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Matière et Systèmes Complexes (MSC (UMR_7057))
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
Dipartimento di Informatica e Sistemistica (DIS)
Università degli Studi di Pavia
BioComputing
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Modeling, simulation, measurement, and control of bacterial regulatory networks (IBIS)
Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM)
Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Jean Roget
Mechanobiology Institute [Singapore] (MBI)
National University of Singapore (NUS)
C’Nano program (région Ile de France)
ANR-10-BINF-0006,Iceberg,Des modèles de population aux populations de modèles: observation, modélisation et contrôle de l'expression génique au niveau de la cellule unique(2010)
ANR-11-LABX-0071,WHO AM I,Determinants de l'Identité : de la molécule à l'individu(2011)
European Project: 257462,EC:FP7:ICT,FP7-ICT-2009-5,HYCON2(2010)
Matière et Systèmes Complexes (MSC)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Università degli Studi di Pavia = University of Pavia (UNIPV)
Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes
Università di Pavia
Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189 (CRIStAL)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Centrale de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Centrale de Lille
ANR-10-BINF-06-01/10-BINF-0006,Iceberg,Iceberg(2010)
ANR-11-LABX-0071_WHOAMI,WHOAMI,Who am I?
Source :
PLoS Computational Biology, PLoS Computational Biology, Public Library of Science, 2016, 12 (2), pp.e1004706. ⟨10.1371/journal.pcbi.1004706⟩, PLoS Computational Biology, Vol 12, Iss 2, p e1004706 (2016), PLoS Computational Biology, 2016, 12 (2), pp.e1004706. ⟨10.1371/journal.pcbi.1004706⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation). Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.<br />Author Summary Because of non-genetic variability, cells in an isogenic population respond differently to a same stimulation. Therefore, the mean behavior of a cell population does not generally correspond to the behavior of the mean cell, and more generally, neglecting cell-to-cell differences biases our quantitative representation and understanding of the functioning of cellular systems. Here we introduce a statistical inference approach allowing for the calibration of (a population of) single cell models, differing by their parameter values. It enables to view time-lapse microscopy data as many experiments performed on one cell rather than one experiment performed on many cells. By harnessing existing cell-to-cell differences, one can then learn how environmental cues affect (non-observed) intracellular processes. Our approach is generic and enables to exploit in unprecedented manner the high informative content of single-cell longitudinal data.

Details

Language :
English
ISSN :
1553734X and 15537358
Database :
OpenAIRE
Journal :
PLoS Computational Biology, PLoS Computational Biology, Public Library of Science, 2016, 12 (2), pp.e1004706. ⟨10.1371/journal.pcbi.1004706⟩, PLoS Computational Biology, Vol 12, Iss 2, p e1004706 (2016), PLoS Computational Biology, 2016, 12 (2), pp.e1004706. ⟨10.1371/journal.pcbi.1004706⟩
Accession number :
edsair.doi.dedup.....e77bbdce5b040229c7596af6c898b977
Full Text :
https://doi.org/10.1371/journal.pcbi.1004706⟩