Back to Search Start Over

The Influence of Contrasting Microbial Lifestyles on the Pre-symbiotic Metabolite Responses of Eucalyptus grandis Roots

Authors :
Johanna W. H. Wong
Adrian Lutz
Siria Natera
Mei Wang
Vivian Ng
Igor Grigoriev
Francis Martin
Ute Roessner
Ian C. Anderson
Jonathan M. Plett
Western Sydney University (UWS)
University of Melbourne
United States Department of Energy
Interactions Arbres-Microorganismes (IAM)
Université de Lorraine (UL)-Institut National de la Recherche Agronomique (INRA)
Western Sydney University
Australian Research Council DE150100408
Laboratory of Excellence ARBRE ANR-11-LABX-0002-01
Region Lorraine Research Council
Office of Science of the U.S. Department of Energy DE-AC02-05CH11231
Plett, Jonathan M.
Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
Source :
Frontiers in Ecology and Evolution, Frontiers in Ecology and Evolution, Frontiers Media S.A, 2019, 7, ⟨10.3389/fevo.2019.00010⟩, Frontiers in Ecology and Evolution (7), . (2019), Frontiers in Ecology and Evolution, vol 7, iss FEB, Frontiers in Ecology and Evolution, Vol 7 (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

© 2019 Wong, Lutz, Natera, Wang, Ng, Grigoriev, Martin, Roessner, Anderson and Plett. Plant roots co-inhabit the soil with a diverse consortium of microbes of which a number attempt to enter symbiosis with the plant. These microbes may be pathogenic, mutualistic, or commensal. Hence, the health and survival of plants is heavily reliant on their ability to perceive different microbial lifestyles and respond appropriately. Emerging research suggests that there is a pivotal role for plant root secondary metabolites in responding to microbial colonization. However, it is largely unknown if plants are able to differentiate between microbes of different lifestyles and respond differently during the earliest stages of pre-symbiosis (i.e., prior to physical contact). In studying plant responses to a range of microbial isolates, we questioned: (1) if individual microbes of different lifestyles and species caused alterations to the plant root metabolome during pre-symbiosis, and (2) if these early metabolite responses correlate with the outcome of the symbiotic interaction in later phases of colonization. We compared the changes of the root tip metabolite profile of the model tree Eucalyptus grandis during pre-symbiosis with two isolates of a pathogenic fungus (Armillaria luteobubalina), one isolate of a pathogenic oomycete (Phytophthora cinnamomi), two isolates of an incompatible mutualistic fungus (Suillus granulatus), and six isolates of a compatible mutualistic fungus (Pisolithus microcarpus). Untargeted metabolite profiling revealed predominantly positive root metabolite responses at the pre-symbiosis stage, prior to any observable phenotypical changes of the root tips. Metabolite responses in the host tissue that were specific to each microbial species were identified. A deeper analysis of the root metabolomic profiles during pre-symbiotic contact with six strains of P. microcarpus showed a connection between these early metabolite responses in the root with later colonization success. Further investigation using isotopic tracing revealed a portion of metabolites found in root tips originated from the fungus. RNA-sequencing also showed that the plant roots undergo complementary transcriptomic reprogramming in response to the fungal stimuli. Taken together, our results demonstrate that the early metabolite responses of plant roots are partially selective toward the lifestyle of the interacting microbe, and that these responses can be crucial in determining the outcome of the interaction.

Details

Language :
English
ISSN :
2296701X
Database :
OpenAIRE
Journal :
Frontiers in Ecology and Evolution, Frontiers in Ecology and Evolution, Frontiers Media S.A, 2019, 7, ⟨10.3389/fevo.2019.00010⟩, Frontiers in Ecology and Evolution (7), . (2019), Frontiers in Ecology and Evolution, vol 7, iss FEB, Frontiers in Ecology and Evolution, Vol 7 (2019)
Accession number :
edsair.doi.dedup.....e744fdb7bc03ff2f55ceb9c29b0091cb
Full Text :
https://doi.org/10.3389/fevo.2019.00010⟩