Back to Search
Start Over
The Influence of Contrasting Microbial Lifestyles on the Pre-symbiotic Metabolite Responses of Eucalyptus grandis Roots
- Source :
- Frontiers in Ecology and Evolution, Frontiers in Ecology and Evolution, Frontiers Media S.A, 2019, 7, ⟨10.3389/fevo.2019.00010⟩, Frontiers in Ecology and Evolution (7), . (2019), Frontiers in Ecology and Evolution, vol 7, iss FEB, Frontiers in Ecology and Evolution, Vol 7 (2019)
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- © 2019 Wong, Lutz, Natera, Wang, Ng, Grigoriev, Martin, Roessner, Anderson and Plett. Plant roots co-inhabit the soil with a diverse consortium of microbes of which a number attempt to enter symbiosis with the plant. These microbes may be pathogenic, mutualistic, or commensal. Hence, the health and survival of plants is heavily reliant on their ability to perceive different microbial lifestyles and respond appropriately. Emerging research suggests that there is a pivotal role for plant root secondary metabolites in responding to microbial colonization. However, it is largely unknown if plants are able to differentiate between microbes of different lifestyles and respond differently during the earliest stages of pre-symbiosis (i.e., prior to physical contact). In studying plant responses to a range of microbial isolates, we questioned: (1) if individual microbes of different lifestyles and species caused alterations to the plant root metabolome during pre-symbiosis, and (2) if these early metabolite responses correlate with the outcome of the symbiotic interaction in later phases of colonization. We compared the changes of the root tip metabolite profile of the model tree Eucalyptus grandis during pre-symbiosis with two isolates of a pathogenic fungus (Armillaria luteobubalina), one isolate of a pathogenic oomycete (Phytophthora cinnamomi), two isolates of an incompatible mutualistic fungus (Suillus granulatus), and six isolates of a compatible mutualistic fungus (Pisolithus microcarpus). Untargeted metabolite profiling revealed predominantly positive root metabolite responses at the pre-symbiosis stage, prior to any observable phenotypical changes of the root tips. Metabolite responses in the host tissue that were specific to each microbial species were identified. A deeper analysis of the root metabolomic profiles during pre-symbiotic contact with six strains of P. microcarpus showed a connection between these early metabolite responses in the root with later colonization success. Further investigation using isotopic tracing revealed a portion of metabolites found in root tips originated from the fungus. RNA-sequencing also showed that the plant roots undergo complementary transcriptomic reprogramming in response to the fungal stimuli. Taken together, our results demonstrate that the early metabolite responses of plant roots are partially selective toward the lifestyle of the interacting microbe, and that these responses can be crucial in determining the outcome of the interaction.
- Subjects :
- 0106 biological sciences
0301 basic medicine
Hyphal growth
BACTERIAL
racine de l'arbre
chemical signaling
Metabolite
[SDV]Life Sciences [q-bio]
HYPHAL GROWTH
lcsh:Evolution
champignon pathogène
01 natural sciences
Armillaria luteobubalina
CARBON
transcriptomics
chemistry.chemical_compound
SIGNALS
colonisation microbienne
lcsh:QH359-425
fungal pathogen
2. Zero hunger
Oomycete
Ecology
biology
Pathogenic fungus
ARABIDOPSIS
metabolomics
secondary plant products
interaction plante champignon
Fungus
FUSARIUM-OXYSPORUM
IMMUNITY
HOST-PLANT
010603 evolutionary biology
03 medical and health sciences
SOIL
RECEPTOR
Symbiosis
lcsh:QH540-549.5
Botany
Metabolome
isotope
Ecology, Evolution, Behavior and Systematics
plant-microbe interaction
Evolutionary Biology
eucalyptus grandis
15. Life on land
biology.organism_classification
030104 developmental biology
chemistry
métabolite secondaire
lcsh:Ecology
0602 Ecology, 0603 Evolutionary Biology
Subjects
Details
- Language :
- English
- ISSN :
- 2296701X
- Database :
- OpenAIRE
- Journal :
- Frontiers in Ecology and Evolution, Frontiers in Ecology and Evolution, Frontiers Media S.A, 2019, 7, ⟨10.3389/fevo.2019.00010⟩, Frontiers in Ecology and Evolution (7), . (2019), Frontiers in Ecology and Evolution, vol 7, iss FEB, Frontiers in Ecology and Evolution, Vol 7 (2019)
- Accession number :
- edsair.doi.dedup.....e744fdb7bc03ff2f55ceb9c29b0091cb
- Full Text :
- https://doi.org/10.3389/fevo.2019.00010⟩