Back to Search Start Over

Scalable and Cost Efficient Maximum Concurrent Flow over IoT using Reinforcement Learning

Authors :
Hassine Moungla
Hatem Ibn-Khedher
Hossam Afifi
Abou-Bakr Djaker
Bouabdellah Kechar
Université d'Oran 1 Ahmed Ben Bella [Oran]
Institut Polytechnique de Paris (IP Paris)
Département Réseaux et Services de Télécommunications (RST)
Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
Réseaux, Systèmes, Services, Sécurité (R3S-SAMOVAR)
Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR)
Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
Laboratoire d'Informatique Paris Descartes (LIPADE (URP_2517))
Université de Paris (UP)
Source :
IWCMC, 2020 International Wireless Communications and Mobile Computing (IWCMC), IWCMC 2020: 16th International Wireless Communications and Mobile Computing conference, IWCMC 2020: 16th International Wireless Communications and Mobile Computing conference, Jun 2020, Limassol (online), Cyprus. pp.539-544, ⟨10.1109/IWCMC48107.2020.9148257⟩
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

International audience; The Internet of Things (IoT) is a network of billion of objects. Data streaming over IoT network is a tedious task that requires intelligent flow management and steering. In this paper, we propose a Distributed Maximum Concurrent Flow (DMCF) algorithm to solve the problem of distributing massive IoT video/data to large consumers over IP/data-centric networks. We propose two approaches based on graph theories, and using reinforcement learning techniques. The proposed approaches are implemented and evaluated over different complex graphs. Results show that in large graphs, reinforcement learning methods outperform classical graph theoretic ones.

Details

Database :
OpenAIRE
Journal :
2020 International Wireless Communications and Mobile Computing (IWCMC)
Accession number :
edsair.doi.dedup.....e73d08cba4491388032943348147b573
Full Text :
https://doi.org/10.1109/iwcmc48107.2020.9148257