Back to Search Start Over

Predicting popularity dynamics of online contents using data filtering methods

Authors :
Georges Linarès
Rachid El-Azouzi
Cedric Richier
Tania Jimenez
Eitan Altman
Jimenez, Tania
Laboratoire Informatique d'Avignon (LIA)
Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
Models for the performance analysis and the control of networks (MAESTRO)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Sep 2016, Monticello, France. pp.31-38, Allerton
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

This paper proposes a new prediction process to explain and predicts popularity evolution of YouTube videos. We exploit prior study on the classification of YouTube videos in order to predict the evolution of videos' view-count. This classification allows to identify important factors of the observed popularity dynamics. In particular, we use this classification as filtering method allowing to identify the factors responsible for this popularity evolution. Results given by extensive experiments show that the proposed prediction process is able to reduce the average prediction errors compared to a state-of-the-art baseline model. We also evaluate the impact of adding popularity criteria in the classification.

Details

Language :
English
Database :
OpenAIRE
Journal :
2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Sep 2016, Monticello, France. pp.31-38, Allerton
Accession number :
edsair.doi.dedup.....e719c9dc7ca660ba7884df9c3a79912d