Back to Search Start Over

The Geometry of Supersymmetric Sigma-Models

Authors :
Alexander Sevrin
Jan Troost
Laboratoire de Physique Théorique de l'ENS (LPTENS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Theoretical Physics
Physics
Vrije Universiteit Brussel
Source :
Publons, Workshop on Gauge Theories, Applied Supersymmetry and Quantum Gravity., Workshop on Gauge Theories, Applied Supersymmetry and Quantum Gravity., Jul 1996, London, United Kingdom. pp.362, Vrije Universiteit Brussel
Publication Year :
1996
Publisher :
arXiv, 1996.

Abstract

We review non-linear sigma-models with (2,1) and (2,2) supersymmetry. We focus on off-shell closure of the supersymmetry algebra and give a complete list of (2,2) superfields. We provide evidence to support the conjecture that all N=(2,2) non-linear sigma-models can be described by these fields. This in its turn leads to interesting consequences about the geometry of the target manifolds. One immediate corollary of this conjecture is the existence of a potential for hyper-Kahler manifolds, different from the Kahler potential, which does not only allow for the computation of the metric, but of the three fundamental two-forms as well. Several examples are provided: WZW models on SU(2) x U(1) and SU(2) x SU(2) and four-dimensional special hyper-Kahler manifolds.<br />Comment: 8 pages, LaTeX, contribution to the proceedings of the workshop Gauge Theories, Applied Supersymmetry and Quantum Gravity, Imperial College, London, 1996

Details

Database :
OpenAIRE
Journal :
Publons, Workshop on Gauge Theories, Applied Supersymmetry and Quantum Gravity., Workshop on Gauge Theories, Applied Supersymmetry and Quantum Gravity., Jul 1996, London, United Kingdom. pp.362, Vrije Universiteit Brussel
Accession number :
edsair.doi.dedup.....e6fae03f93c8b88535106e370ab78675
Full Text :
https://doi.org/10.48550/arxiv.hep-th/9610103