Back to Search Start Over

Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques

Authors :
Felicia Anisoara Damian Michis
Simona Moldovanu
Keka C. Biswas
Anisia Culea-Florescu
Luminita Moraru
Source :
Cancers, Volume 13, Issue 21, Cancers, Vol 13, Iss 5256, p 5256 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

(1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm and a neural network model to assist dermatologists in the diagnosis of cancerous skin lesions. As a main contribution, this work proposes a descriptor that combines skin surface fractal dimension and relevant color area features for skin lesion classification purposes. The surface fractal dimension is computed using a 2D generalization of Higuchi’s method. A clustering method allows for the selection of the relevant color distribution in skin lesion images by determining the average percentage of color areas within the nevi and melanoma lesion areas. In a classification stage, the Higuchi fractal dimensions (HFDs) and the color features are classified, separately, using a kNN-CV algorithm. In addition, these features are prototypes for a Radial basis function neural network (RBFNN) classifier. The efficiency of our algorithms was verified by utilizing images belonging to the 7-Point, Med-Node, and PH2 databases<br />(3) Results: Experimental results show that the accuracy of the proposed RBFNN model in skin cancer classification is 95.42% for 7-Point, 94.71% for Med-Node, and 94.88% for PH2, which are all significantly better than that of the kNN algorithm. (4) Conclusions: 2D Higuchi’s surface fractal features have not been previously used for skin lesion classification purpose. We used fractal features further correlated to color features to create a RBFNN classifier that provides high accuracies of classification.

Details

Language :
English
ISSN :
20726694
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....e6da93b705883a9c82bdecd9d5979662
Full Text :
https://doi.org/10.3390/cancers13215256