Back to Search Start Over

Hypoxia Activates Tumor Suppressor p53 by Inducing ATR-Chk1 Kinase Cascade-mediated Phosphorylation and Consequent 14-3-3γ Inactivation of MDMX Protein

Authors :
Guifen He
Jun-Ho Lee
Yetao Jin
Geoffrey M. Wahl
Yunyuan V. Wang
Hua Lu
Shelya X. Zeng
Source :
Journal of Biological Chemistry. 287:20898-20903
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

It has been known that p53 can be induced and activated by hypoxia, an abnormal condition that often occurs in rapidly growing solid tumors or when normal tissues undergo ischemia. Although the ATR-Chk1 kinase cascade was associated with hypoxia-induced p53 activation, molecules that directly link this hypoxia-ATR-Chk1 pathway to p53 activation have been elusive. Here, we showed that hypoxia could induce phosphorylation of MDMX at Ser-367 and enhance the binding of this phosphorylated MDMX to 14-3-3γ, consequently leading to p53 activation. A Chk1 inhibitor or knockdown of ATR and Chk1 inhibited the phosphorylation of MDMX at Ser-367 and impaired the binding of MDMX to 14-3-3γ in addition to p53 activation in response to hypoxia. In primary mouse embryonic fibroblast cells that harbor a mutant MDMX, including the S367A mutation, hypoxia also failed to induce the binding of this mutant MDMX to 14-3-3γ and to activate p53 and its direct targets. These results demonstrate that hypoxia can activate p53 through inactivation of MDMX by the ATR-Chk1-MDMX-14-3-3γ pathway.

Details

ISSN :
00219258
Volume :
287
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....e6b907d6b43ae7aad0e73fa7ad7274fb
Full Text :
https://doi.org/10.1074/jbc.m111.336875