Back to Search Start Over

Improved microwave biosensor for non-invasive dielectric characterization of biological tissues

Authors :
Satria Hardinata
M. Tlili
Hamid Kokabi
Fabien Koskas
Georges Alquie
Kammel Rachedi
Frederique Deshours
Laboratoire d'Electronique et Electromagnétisme (L2E)
Sorbonne Université (SU)
Laboratoire Ondes et Acoustique (UMR 7587) (LOA)
Université Paris Diderot - Paris 7 (UPD7)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Département Micro-Ondes (IMT Atlantique - MO)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Service de Chirurgie cardiaque et thoracique [CHU Pitié-Salpêtrière]
CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Source :
Microelectronics Journal, Microelectronics Journal, Elsevier, 2018, ⟨10.1016/j.mejo.2018.01.027⟩
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

International audience; Microwave planar sensors have a great interest in the medical environment due to their ability to measure the bulk dielectric parameters of biological tissues through non-invasive and contact-less sensing properties. Changes of these parameters, which are frequency dependent, can be representative of the pathological state of biological tissues. In this work, an improved prototype of planar sensor based on a microwave ring resonator operating at 1 GHz for the fundamental mode is presented. The objective is to obtain a better sensitivity for measuring high complex permittivity values of materials such as biological tissues, and to obtain higher precision in parameters determination. The performances of two sensors optimized on two different substrates were measured in a frequency range 1–10 GHz; an accurate equivalent electrical model is proposed to reproduce the frequency dependence of the resonators. Characterization of liquids and ex-vivo animal tissues is achieved to evaluate the effectiveness and the performances of the resonator sensor, and results are compared with electromagnetic simulations.

Details

ISSN :
00262692
Volume :
88
Database :
OpenAIRE
Journal :
Microelectronics Journal
Accession number :
edsair.doi.dedup.....e65ab4ec174308944c3271136331bac9