Back to Search Start Over

Nilpotent adjacency matrices, random graphs, and quantum random variables

Authors :
George Stacey Staples
René Schott
Institut Élie Cartan de Nancy (IECN)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)
Department of Mathematics and Statistics - Southern Illinois University
Southern Illinois University [Edwardsville] (SIUE)
Schott, René
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2008, 41, pp.155-205, Journal of Physics A: Mathematical and Theoretical, 2008, 41, pp.155-205
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

International audience; For fixed $n>0$, the space of finite graphs on $n$ vertices is canonically associated with an abelian, nilpotent-generated subalgebra of the $2n$-particle fermion algebra. using the generators of the subalgebra, an algebraic probability space of "nilpotent adjacency matrices" associated with finite graphs is defined. Each nilpotent adjacency matrix is a quantum random variable whose $m^th$ moment corresponds to the number of $m$-cycles in the graph $G$. Each matrix admits a canonical "quantum decomposition" into a sum of three algebraic random variables: $a = a^\Delta+ a^\Upsilon+a^Lambda$, where $a^\Delta$ is classical while $a^\Upsilon and $a^\Lambda$ are quantum. Moreover, within the algebraic context, the NP problem of cycle enumeration is reduced to matrix multiplication, requiring no more than $n^4$ multiplications within the algebra.

Details

Language :
English
ISSN :
17518113 and 17518121
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2008, 41, pp.155-205, Journal of Physics A: Mathematical and Theoretical, 2008, 41, pp.155-205
Accession number :
edsair.doi.dedup.....e6326699ff1cc2472e556198a135ab2f