Back to Search
Start Over
Delineation atlas of the Circle of Willis and the large intracranial arteries for evaluation of doses to neurovascular structures in pediatric brain tumor patients treated with radiation therapy
- Source :
- Toussaint, L, Peters, S, Mikkelsen, R, Karabegovic, S, Bäumer, C, Muren, L P, Tram-Henriksen, L, Høyer, M, Lassen-Ramshad, Y & Timmermann, B 2021, ' Delineation atlas of the Circle of Willis and the large intracranial arteries for evaluation of doses to neurovascular structures in pediatric brain tumor patients treated with radiation therapy ', Acta Oncologica, vol. 60, no. 11, pp. 1392-1398 . https://doi.org/10.1080/0284186X.2021.1945679, Acta Oncologica
- Publication Year :
- 2021
-
Abstract
- Survivors of pediatric brain tumors are susceptible to neurovascular disease after radiotherapy, with dose to the chiasm or Circle of Willis (CW) as risk factors. The aims of this study were to develop a delineation atlas of neurovascular structures, to investigate the doses to these structures in relation to tumor location and to investigate potential dose surrogates for the CW dose. An atlas of the CW, the large intracranial arteries and the suprasellar cistern (SC) was developed and validated. Thirty proton plans from previously treated pediatric brain tumor patients were retrieved and grouped according to tumor site: 10 central, 10 lateralized, and 10 posterior fossa tumors. Based on the atlas, neurovascular structures were delineated and dose metrics (mean dose (Dmean) and maximal dose (Dmax)) to these structures and the already delineated chiasm were evaluated. The agreement between dose metrics to the CW vs. chiasm/SC was investigated. The minimal Hausdorff distance (HDmin) between the target and SC was correlated with the SC Dmean. The median Dmean/Dmax to the CW were 53 Gy(RBE)/55 Gy(RBE) in the central tumors, 18 Gy(RBE)/25 Gy(RBE) in the lateralized tumors and 30 Gy(RBE)/49 Gy(RBE) in the posterior fossa tumors. There was a good agreement between the Dmax/Dmean to the CW and the SC for all cases (R2=0.99), while in the posterior fossa group, the CW Dmax was underestimated when using the chiasm as surrogate (R2=0.76). Across all patients, cases with HDmin < 10 mm between the target and the SC received the highest SC Dmean. The pattern of dose to neurovascular structures varied with the tumor location. For all locations, SC doses could be used as a surrogate for CW doses. A minimal distance larger than 10 mm between the target and the SC indicated a potential for neurovascular dose sparing.
- Subjects :
- Neurovascular
Organs at Risk
congenital, hereditary, and neonatal diseases and abnormalities
medicine.medical_specialty
suprasellar cistern
animal structures
medicine.medical_treatment
Medizin
Atlas (anatomy)
medicine.artery
proton therapy
Proton Therapy
Humans
Medicine
Radiology, Nuclear Medicine and imaging
Child
long-term effects
Proton therapy
Brain Neoplasms
business.industry
Radiotherapy Planning, Computer-Assisted
pediatric brain tumors
nutritional and metabolic diseases
Radiotherapy Dosage
Hematology
General Medicine
Neurovascular bundle
nervous system diseases
Radiation therapy
medicine.anatomical_structure
Oncology
Pediatric brain
embryonic structures
Pediatric Brain Tumor
Circle of Willis
Radiotherapy, Intensity-Modulated
Radiology
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Toussaint, L, Peters, S, Mikkelsen, R, Karabegovic, S, Bäumer, C, Muren, L P, Tram-Henriksen, L, Høyer, M, Lassen-Ramshad, Y & Timmermann, B 2021, ' Delineation atlas of the Circle of Willis and the large intracranial arteries for evaluation of doses to neurovascular structures in pediatric brain tumor patients treated with radiation therapy ', Acta Oncologica, vol. 60, no. 11, pp. 1392-1398 . https://doi.org/10.1080/0284186X.2021.1945679, Acta Oncologica
- Accession number :
- edsair.doi.dedup.....e62ba3d08c37341f8088483e0e03ef49
- Full Text :
- https://doi.org/10.1080/0284186X.2021.1945679