Back to Search Start Over

Hypersequent calculi for non-normal modal and deontic logics: Countermodels and optimal complexity

Authors :
Björn Lellmann
Tiziano Dalmonte
Nicola Olivetti
Elaine Pimentel
Logique, Interaction, Raisonnement et Inférence, Complexité, Algèbre (LIRICA)
Laboratoire d'Informatique et Systèmes (LIS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)
Vienna University of Technology (TU Wien)
Universidade Federal do Rio Grande do Norte [Natal] (UFRN)
ANR-16-CE91-0002,TICAMORE,Traduction et Découverte des Calculs pour les logiques Modales et dérivées(2016)
Source :
Journal of Logic and Computation, Journal of Logic and Computation, 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩, Journal of Logic and Computation, Oxford University Press (OUP), 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

We present some hypersequent calculi for all systems of the classical cube and their extensions with axioms ${T}$, ${P}$ and ${D}$ and for every $n \geq 1$, rule ${RD}_n^+$. The calculi are internal as they only employ the language of the logic, plus additional structural connectives. We show that the calculi are complete with respect to the corresponding axiomatization by a syntactic proof of cut elimination. Then, we define a terminating proof search strategy in the hypersequent calculi and show that it is optimal for coNP-complete logics. Moreover, we show that from every failed proof of a formula or hypersequent it is possible to directly extract a countermodel of it in the bi-neighbourhood semantics of polynomial size for coNP logics, and for regular logics also in the relational semantics. We finish the paper by giving a translation between hypersequent rule applications and derivations in a labelled system for the classical cube.

Details

ISSN :
0955792X and 1465363X
Database :
OpenAIRE
Journal :
Journal of Logic and Computation, Journal of Logic and Computation, 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩, Journal of Logic and Computation, Oxford University Press (OUP), 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩
Accession number :
edsair.doi.dedup.....e608db2a5e1db9e39d869d9d3e7e3cab
Full Text :
https://doi.org/10.48550/arxiv.2006.05436