Back to Search
Start Over
The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum
- Publication Year :
- 2018
-
Abstract
- We report deep Chandra X-ray Observatory (CXO), Hubble Space Telescope (HST), and Karl J. Jansky Very Large Array (VLA) observations of the binary neutron star event GW170817 at t < 160 days after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency νc is above the X-ray band and the synchrotron frequency νm is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index p of the distribution of non-thermal relativistic electrons $N(\gamma )\propto {\gamma }^{-p}$ accelerated by a shock launched by a neutron star (NS)–NS merger to date. We find p = 2.17 ± 0.01, which indicates that radiation from ejecta with Γ ~ 3–10 dominates the observed emission. While constraining the nature of the emission process, these observations do not constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal short gamma-ray burst (SGRB) directed away from our line of sight. Observations at t ≤ 200 days are unlikely to settle the debate, as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.
- Subjects :
- Physics
010308 nuclear & particles physics
Gravitational wave
Electromagnetic spectrum
Astrophysics::High Energy Astrophysical Phenomena
Socio-culturale
Astronomy and Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics
Kilonova
01 natural sciences
LIGO
Synchrotron
law.invention
Neutron star
gravitational waves
13. Climate action
Space and Planetary Science
law
0103 physical sciences
Gamma-ray burst
010303 astronomy & astrophysics
Event (particle physics)
Astrophysics::Galaxy Astrophysics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....e5e359447ae2d80fd385e96399ab0f09