Back to Search Start Over

High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound

Authors :
Zhi Yong Shen
Li Wang
Yu Feng Zhou
Hai Feng Si
Ying Mei Jiang
Source :
Ultrasonics Sonochemistry. 40:980-987
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

The aim of this study is to assess the physical damage of cavitation effects induced by low frequency ultrasound and microbubbles (MBs) to an in vitro vessel. A rabbit carotid artery filled with SonoVue MBs and methylene blue was irradiated with 20-kHz ultrasound, and the results were recorded by high-speed photography at 3000 frames per second. The carotid artery filled with MBs experienced a slight tremor during ultrasonication. Six intermittent blue flow events occurred in two places on the artery wall during the 5-s process. The duration of each leakage event was 90–360 ms with an average of 200 ms. Hematoxylin-eosin (H-E) staining demonstrated the separation of the carotid artery elastic membrane, local blood vessel wall defects and hole formation, and the surface of the ruptured area was rough and irregular. Another carotid artery was filled with a 0.9% NaCl solution and methylene blue as a control and irradiated with 20-kHz ultrasound. No blue liquid flow was seen, and no holes in the vessel were observed. H-E staining revealed intact vascular endothelial cells and smooth muscles with no vascular wall defects. Low-frequency ultrasound combined with MBs can cause a vessel to rupture and holes to form in a short time. High-speed photography is useful for observing transient changes caused by the effects of ultrasound cavitation on an in vitro vessel.

Details

ISSN :
13504177
Volume :
40
Database :
OpenAIRE
Journal :
Ultrasonics Sonochemistry
Accession number :
edsair.doi.dedup.....e5be9f5929810636ecd7de7cc61ec4c5