Back to Search Start Over

Refining HTN Methods via Task Insertion with Preferences

Authors :
Hankui Hankz Zhuo
Hai Wan
Zhanhao Xiao
Laurent Perrussel
Andreas Herzig
Peilin Chen
School of Data and Computer Science [Guangzhou]
Sun Yat-Sen University [Guangzhou] (SYSU)
Logique, Interaction, Langue et Calcul (IRIT-LILaC)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Centre National de la Recherche Scientifique (CNRS)
Source :
AAAI, Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAi 2020), Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAi 2020), Feb 2020, New York, United States. pp.10009-10016, ⟨10.1609/aaai.v34i06.6557⟩
Publication Year :
2020
Publisher :
Association for the Advancement of Artificial Intelligence (AAAI), 2020.

Abstract

Hierarchical Task Network (HTN) planning is showing its power in real-world planning. Although domain experts have partial hierarchical domain knowledge, it is time-consuming to specify all HTN methods, leaving them incomplete. On the other hand, traditional HTN learning approaches focus only on declarative goals, omitting the hierarchical domain knowledge. In this paper, we propose a novel learning framework to refine HTN methods via task insertion with completely preserving the original methods. As it is difficult to identify incomplete methods without designating declarative goals for compound tasks, we introduce the notion of prioritized preference to capture the incompleteness possibility of methods. Specifically, the framework first computes the preferred completion profile w.r.t. the prioritized preference to refine the incomplete methods. Then it finds the minimal set of refined methods via a method substitution operation. Experimental analysis demonstrates that our approach is effective, especially in solving new HTN planning instances.<br />8 pages,7 figures, Accepted in AAAI-20

Details

ISSN :
23743468 and 21595399
Volume :
34
Database :
OpenAIRE
Journal :
Proceedings of the AAAI Conference on Artificial Intelligence
Accession number :
edsair.doi.dedup.....e5849f8af3c86b3a1a409ca186a6060e