Back to Search Start Over

In vivo mapping of a GPCR interactome using knockin mice

Authors :
Christine Lavoie
Jade Degrandmaison
Véronique Blais
Jim Boulter
Jean-Luc Parent
Samuel Génier
Khaled Abdallah
Louis Gendron
Catherine M. Cahill
Francis Bergeron
Marie-Pier Lalumière
Source :
Proc Natl Acad Sci U S A
Publication Year :
2020
Publisher :
Proceedings of the National Academy of Sciences, 2020.

Abstract

With over 30% of current medications targeting this family of proteins, G-protein–coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography–tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.

Details

ISSN :
10916490 and 00278424
Volume :
117
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....e552663e1b33fafd3197dc42e973a4a1