Back to Search Start Over

Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

Authors :
Muhammad Faisal
Erum Zahid
Javid Shabbir
Ijaz Hussain
Tajammal Hussain
Nasser M. AbdEl-Salam
Gunter Spöck
Source :
PLoS ONE, Vol 11, Iss 9, p e0161810 (2016), PLoS ONE
Publication Year :
2016
Publisher :
Public Library of Science (PLoS), 2016.

Abstract

Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design.

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
9
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....e54ce209ec32db7168f2f1387567deaf