Back to Search Start Over

Ray Tracing Simulation in Nonspherically Symmetric Atmosphere for GPS Radio Occultation

Authors :
Cheng Yung Huang
Ming Quey Chen
Tsen Chieh Chiu
Yuei-An Liou
Wen Hao Yeh
Jann-Yenq Liu
Source :
Terrestrial, Atmospheric and Oceanic Sciences, Vol 25, Iss 6, p 801 (2014)
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

A three-dimensional ray tracing model with aiming algorithms for global positioning system (GPS) signal is proposed to make simulations conform to the realistic radio occultation (RO) signal propagation. The two aiming algorithms used in this study ensure the initial and end point ray trajectories are located in the prescribed region. In past studies, the ray tracing techniques applied to the RO signal simulation usually assumed a spherically symmetrical atmosphere for simplicity. The exact GPS and low earth orbit (LEO) satellite locations are not considered in the simulation. These two assumptions make the simulation unrealistic for GPS signal propagation in the RO technique. In the proposed model, the shape of the earth is assumed as an ellipse. The information from European Centre for Medium-Range Weather Forecasts (ECMWF) analysis is used to setup the atmosphere in the simulation. Two aiming algorithms are developed to determine the initial signal propagating direction to make the simulated signal start from the prescribed GPS satellite position and end in the close vicinity of the LEO satellite position. An ideal spherical symmetric atmospheric structure is used to verify the ray tracing model. The fractional difference between real and simulated refractivity results is less than 0.1%. Otherwise, the GPS and LEO satellite position in the Formosat-3/COSMIC observation and the ECMWF analysis, considering the earth¡¦s flattening, is also used to verify the aiming algorithms. All of the simulated signals end in close vicinity to the LEO satellite position in the simulation results.

Details

ISSN :
10170839
Volume :
25
Database :
OpenAIRE
Journal :
Terrestrial, Atmospheric and Oceanic Sciences
Accession number :
edsair.doi.dedup.....e4aae446e7c7be6fda535ae19c5ba8e7