Back to Search
Start Over
Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates
- Source :
- Journal of Multivariate Analysis, Journal of Multivariate Analysis, 2016, 148, pp.141-159. ⟨10.1016/j.jmva.2016.03.002⟩, Journal of Multivariate Analysis, Elsevier, 2016, 148, pp.141-159. ⟨10.1016/j.jmva.2016.03.002⟩, Journal of Multivariate Analysis, Elsevier, 2016, 148, pp.141-159. <10.1016/j.jmva.2016.03.002>
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- The aim of this article is to propose a novel kernel estimator of the baseline function in a general high-dimensional Cox model, for which we derive non-asymptotic rates of convergence. To construct our estimator, we first estimate the regression parameter in the Cox model via a Lasso procedure. We then plug this estimator into the classical kernel estimator of the baseline function, obtained by smoothing the so-called Breslow estimator of the cumulative baseline function. We propose and study an adaptive procedure for selecting the bandwidth, in the spirit of Gold-enshluger and Lepski (2011). We state non-asymptotic oracle inequalities for the final estimator, which reveal the reduction of the rates of convergence when the dimension of the covariates grows.
- Subjects :
- FOS: Computer and information sciences
Statistics and Probability
Statistics::Theory
Kernel density estimation
[MATH] Mathematics [math]
010103 numerical & computational mathematics
Semi-parametric model
Statistics - Applications
Counting process
01 natural sciences
Non-asymptotic oracle inequality
Methodology (stat.ME)
010104 statistics & probability
Minimum-variance unbiased estimator
[STAT.AP] Statistics [stat]/Applications [stat.AP]
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Statistics
Consistent estimator
Applications (stat.AP)
[MATH]Mathematics [math]
0101 mathematics
Statistics - Methodology
ComputingMilieux_MISCELLANEOUS
Goldenshluger and Lepski method
Mathematics
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Numerical Analysis
[STAT.ME] Statistics [stat]/Methodology [stat.ME]
[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]
Estimator
[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]
Survival analysis
Kernel estimation
Efficient estimator
Variable kernel density estimation
Statistics, Probability and Uncertainty
Minimax estimator
[STAT.ME]Statistics [stat]/Methodology [stat.ME]
Invariant estimator
Conditional hazard rate function
Subjects
Details
- ISSN :
- 0047259X and 10957243
- Volume :
- 148
- Database :
- OpenAIRE
- Journal :
- Journal of Multivariate Analysis
- Accession number :
- edsair.doi.dedup.....e4980909d003e56416ef450a9263b90b
- Full Text :
- https://doi.org/10.1016/j.jmva.2016.03.002