Back to Search Start Over

Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy

Authors :
Sören Doose
Elisabeth Peters
Markus Sauer
Hannes Neuweiler
Jan C. Schöning
Dorothee Staiger
Mark Schüttpelz
Publication Year :
2008
Publisher :
American Chemical Society (ACS), 2008.

Abstract

The clock-regulated RNA recognition motif (RRM)-containing protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences the amplitude of its transcript oscillation at the post-transcriptional level. This autoregulation relies on AtGRP7 binding to its own pre-mRNA. The sequence and structural requirements for this interaction are unknown at present. In this work, we used photoinduced electron transfer fluorescence correlation spectroscopy (PET-FCS) as a novel technique to study the role of target RNA secondary structure and conformational dynamics during the recognition and binding process. Conformational dynamics of single-stranded (ss) oligonucleotides were studied in aqueous solution with single-molecule sensitivity and high temporal resolution by monitoring fluorescence quenching of the oxazine fluorophore MR121 by guanosine residues. Comparative analysis of translational diffusion constants revealed that both ssRNA and ssDNA bind to AtGRP7 with similar dissociation constants on the order of 10(-7) M and that a minimal binding sequence 5'-UUC UGG-3' is needed for recognition by AtGRP7. PET-FCS experiments demonstrated that conformational flexibility of short, single-stranded, MR121-labeled oligonucleotides is reduced upon AtGRP7 binding. In contrast to many other RRM proteins, AtGRP7 binds to ssRNA preferentially if the RNA is fully stretched and not embedded within a stable secondary structure. The results suggest that AtGRP7 binding leads to a conformational rearrangement in the mRNA, arresting the flexible target sequence in an extended structure of reduced flexibility that may have consequences for further post-transcriptional processing of the mRNA.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e495d7e295a61b4303840b7085e59202