Back to Search Start Over

Quantitative Proteomics in Yeast: From bSLIM and Proteome Discoverer Outputs to Graphical Assessment of the Significance of Protein Quantification Scores

Authors :
Nicolas Sénécaut
Pierre Poulain
Laurent Lignières
Samuel Terrier
Véronique Legros
Guillaume Chevreux
Gaëlle Lelandais
Jean-Michel Camadro
Institut Jacques Monod (IJM (UMR_7592))
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
ANR-18-CE44-0014,SLIM-labeling,Protéomique haute performance par réduction de la complexité isotopique in vivo(2018)
Frédéric Devaux
Source :
Yeast Functional Genomics, Yeast Functional Genomics, 2477, Springer US, pp.275-292, 2022, Methods in Molecular Biology, ⟨10.1007/978-1-0716-2257-5_16⟩, Yeast Functional Genomics. Methods and Protocols, Frédéric Devaux. Yeast Functional Genomics. Methods and Protocols, 2477, Springer US, pp.275-292, 2022, Methods in Molecular Biology, 978-1-0716-2256-8. ⟨10.1007/978-1-0716-2257-5_16⟩, Methods in Molecular Biology ISBN: 9781071622568
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Simple light isotope metabolic labeling (bSLIM) is an innovative method to accurately quantify differences in protein abundance at the proteome level in standard bottom-up experiments. The quantification process requires computation of the ratio of intensity of several isotopologs in the isotopic cluster of every identified peptide. Thus, appropriate bioinformatic workflows are required to extract the signals from the instrument files and calculate the required ratio to infer peptide/protein abundance. In a previous study (Sénécaut et al., J Proteome Res 20:1476–1487, 2021), we developed original open-source workflows based on OpenMS nodes implemented in a KNIME working environment. Here, we extend the use of the bSLIM labeling strategy in quantitative proteomics by presenting an alternative procedure to extract isotopolog intensities and process them by taking advantage of new functionalities integrated into the Minora node of Proteome Discoverer 2.4 software. We also present a graphical strategy to evaluate the statistical robustness of protein quantification scores and calculate the associated false discovery rates (FDR). We validated these approaches in a case study in which we compared the differences between the proteomes of two closely related yeast strains.

Details

Language :
English
ISBN :
978-1-07-162256-8
ISBNs :
9781071622568
Database :
OpenAIRE
Journal :
Yeast Functional Genomics, Yeast Functional Genomics, 2477, Springer US, pp.275-292, 2022, Methods in Molecular Biology, ⟨10.1007/978-1-0716-2257-5_16⟩, Yeast Functional Genomics. Methods and Protocols, Frédéric Devaux. Yeast Functional Genomics. Methods and Protocols, 2477, Springer US, pp.275-292, 2022, Methods in Molecular Biology, 978-1-0716-2256-8. ⟨10.1007/978-1-0716-2257-5_16⟩, Methods in Molecular Biology ISBN: 9781071622568
Accession number :
edsair.doi.dedup.....e49103f17f0fd2b1744cb02481288b4a
Full Text :
https://doi.org/10.1007/978-1-0716-2257-5_16⟩