Back to Search Start Over

Conditioned Langevin Dynamics enables efficient sampling of transition paths

Authors :
Delarue, Marc
Koehl, Patrice
Orland, Henri
Dynamique structurale des Macromolécules / Structural Dynamics of Macromolecules
Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
University of California [Davis] (UC Davis)
University of California (UC)
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Beijing Computational Science Research Center [Beijing] (CSRC)
ANR-10-BINF-0003,Bip:Bip,Paradigme d'inference bayesienne pour la Biologie structurale in silico(2010)
Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
University of California
Publication Year :
2016

Abstract

We propose a novel stochastic method to generate Brownian paths conditioned to start at an initial point and end at a given final point during a fixed time $t_f$ under a given potential $U(x)$. These paths are sampled with a probability given by the overdamped Langevin dynamics. We show that these paths can be exactly generated by a local $Stochastic$ $Partial$ $Differential$ $Equation$ $(SPDE)$. This equation cannot be solved in general. We present several approximations that are valid either in the low temperature regime or in the presence of barrier crossing. We show that this method warrants the generation of statistically independent transition paths. It is computationally very efficient. We illustrate the method on the two dimensional Mueller potential as well as on the Mexican hat potential.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e4838a430735dce755ad2ece5b1e1ed1