Back to Search Start Over

MODL-20. A BIOBANK OF ~100 PATIENT-DERIVED MODELS REPRESENTING BIOLOGICAL HETEROGENEITY AND DISTINCT THERAPEUTIC DEPENDENCIES IN PAEDIATRIC HIGH GRADE GLIOMA AND DIPG

Authors :
Matthew Clarke
Ketty Kessler
Janat Fazal Salom
Jessica K.R. Boult
Alan Mackay
Angel M. Carcaboso
Maria Vinci
Natalie Simon
Darren Hargrave
Valeria Molinari
Fernando Carceller
Elisa Izquierdo
Diana Carvalho
Chris Jones
Mariama Fofana
Elisabet Potente Fernandez
Rebecca Rogers
Jane Pears
Sara Temelso
Lynn Bjerke
Lynley V. Marshall
Andrew S. Moore
Simon P. Robinson
Anna Burford
Mike Hubank
Source :
Neuro-Oncology
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

Paediatric high-grade glioma comprise multiple biological and clinical subgroups, the majority of which urgently require novel therapies. Patient-derived models represent useful tools for mechanistic and preclinical investigations based upon their retention of key genetic/epigenetic features and their amenability to high-throughput approaches. We have collected ~100 in vitro models representing multiple subtypes (H3.3/H3.2/H3.1K27M, H3.3G34R/V, BRAF, MYCN_amp, NTRK_fusion, hypermutator, others) established under 2D (laminin) and/or 3D (neurosphere) conditions, credentialed by phenotypic (growth, invasion/migration) and molecular (methylation array, DNA sequencing, RNAseq) comparison to the original tumour sample. These were derived from patients at our local hospitals (n=29), as part of national co-clinical trials (n=19), from international collaborating centres (n=11), or shared directly by research groups worldwide (n=45). These have variously been subjected to pharmacological (approved/experimental drug libraries) and/or genetic screening (whole-genome CRISPR) to identify specific biological dependencies. Many have been established as orthotopic xenografts in vivo (PDX), with detailed pathological and radiological correlations with the clinical disease, and with tumorigenic latencies ranging from 48–435 days. This resource has allowed us to identify genotype-specific synthetic lethalities and responses to targeted inhibitors, including olaparib (PARP) with ATRX, nutlin-3 (MDM2) with PPM1D, AZD1775 (WEE1) with TP53, and CYC065 (CDK9) with MYCN-amplification. Combinatorial screening highlighted synergies in ACVR1-mutant DIPG between novel ALK2 inhibitors and ONC201 (DRD2). Rapid screening allows for feedback of drug sensitivities to treating clinicians at relapse, whilst mechanistic underpinning of these interactions and use of the models to identify specific mediators of resistance will allow for rational future trial design.

Details

ISSN :
15235866 and 15228517
Volume :
22
Database :
OpenAIRE
Journal :
Neuro-Oncology
Accession number :
edsair.doi.dedup.....e47d2cb6e56d2b9322d9f35006ce4c16
Full Text :
https://doi.org/10.1093/neuonc/noaa222.593