Back to Search Start Over

Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - A review

Authors :
Peter R. Flatt
J. Michael Conlon
Finbarr O'Harte
Source :
Peptides. 147
Publication Year :
2021

Abstract

The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal β-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with β-cell proliferation, protection of β-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in β-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in β-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.

Details

ISSN :
18735169
Volume :
147
Database :
OpenAIRE
Journal :
Peptides
Accession number :
edsair.doi.dedup.....e464f4e50e1ef4b4b46f354c336fd609