Back to Search Start Over

Synthesis and Characterization of N-Octanoyl-β-D-glucosylamine, a New Surfactant for Membrane Studies

Authors :
Henri Wróblewski
J.F. Valdor
D. Plusquellec
C. Brennerhenaff
Source :
Analytical Biochemistry. 212:117-127
Publication Year :
1993
Publisher :
Elsevier BV, 1993.

Abstract

The new nonionic glycosidic surfactant N-octanoyl-beta-D-glucosylamine (NOGA, molar mass 305.37 g) was synthesized through an easy and efficient two-step procedure. Specifically, beta-D-glucosylamine was obtained by the replacement of the anomeric hydroxyl of D-glucose by an amino group which was then selectively acylated. NOGA was finally purified by silica gel column chromatography and recrystallization. This compound is stable and soluble in water and usual buffers up to 80 mM at 4 degrees C and up to 0.2 M at 37 degrees C. NOGA solutions are also characterized by a low ultraviolet light absorbance above 250 nm (epsilon 280 approximately 1.5 M-1 cm-1). Due to its very high critical micelle concentration (CMC = 80 mM, as determined by spectrofluorimetry), this surfactant may easily be removed from samples by dialysis or, to a lesser extent, by adsorption onto hydrophobic beads. Furthermore, NOGA is colorimetrically titrable by the ninhydrin method and its weak interference in protein determination by the bicinchoninic acid method is easy to overcome. This surfactant exhibits a good solubilizing power toward membrane proteins, with a marked selectivity for spiralin, a bacterial surface antigen. Protein extraction started below the CMC, but was much more effective above this concentration threshold. NADH oxidase activity, ligand binding by the glycine betaine-binding protein, and antigenicity of more than 20 membrane or soluble proteins were not altered by NOGA. Thus, owing to its extraction efficacy and mildness toward protein structure and activity, NOGA should prove useful for membrane studies and offers the additional advantage of being easy to synthesize at low cost.

Details

ISSN :
00032697
Volume :
212
Database :
OpenAIRE
Journal :
Analytical Biochemistry
Accession number :
edsair.doi.dedup.....e425c332a03e20fc546e9711032557c7