Back to Search Start Over

Effect of relative humidity on the migration of benzophenone from paperboard into the food simulant Tenax® and modelling hereof

Authors :
Line Lundbæk Barnkob
Jens Højslev Petersen
Source :
Food additivescontaminants. Part A, Chemistry, analysis, control, exposurerisk assessment. 30(2)
Publication Year :
2012

Abstract

The aim of this study was to investigate the effect of relative humidity on the migration of benzophenone from paperboard into the food simulant Tenax®. Kinetic migration investigations were carried out with three relative humidities in the interval between 39% and73%. All investigations were carried out at a constant temperature of 34°C. It was found that the migration of benzophenone after more than 30 days was 4.8 times higher at a relative humidity of 64%-71%, and 7.3 times higher at a relative humidity of73%, compared with that at a relative humidity of 39%-49%. Diffusion and partition coefficients were derived from the results by using a software for modelling migration in multilayer materials. Both the diffusion coefficient and the partition coefficient, between paperboard and Tenax®, decrease with increasing relative humidity. The experimental results were correctly modelled only when the paperboard was regarded as a one-layer system as compared with a two-layer system: where the main part of the paperboard (B1) has a high diffusion rate and a thin part of the paperboard (B2) in contact with the foodstuff has a lower diffusion rate.

Details

ISSN :
19440057
Volume :
30
Issue :
2
Database :
OpenAIRE
Journal :
Food additivescontaminants. Part A, Chemistry, analysis, control, exposurerisk assessment
Accession number :
edsair.doi.dedup.....e40c6148294bee628148f45b8669255d