Back to Search
Start Over
Geometry of integrable dynamical systems on 2-dimensional surfaces
- Source :
- Acta Mathematica Vietnamica, Acta Mathematica Vietnamica, Springer Singapore, 2013, 38 (1), p. 79-106. ⟨10.1007/s40306-012-0005-9⟩, Acta Mathematica Vietnamica, 2013, 38 (1), p. 79-106. ⟨10.1007/s40306-012-0005-9⟩
- Publication Year :
- 2013
- Publisher :
- HAL CCSD, 2013.
-
Abstract
- This paper is devoted to the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on 2-dimensional surfaces, under some nondegeneracy conditions. The main continuous invariants involved in this classification are the left equivalence classes of period or monodromy functions, and the cohomology classes of period cocycles, which can be expressed in terms of Puiseux series. We also study the problem of Hamiltonianization of these integrable vector fields by a compatible symplectic or Poisson structure.<br />31 pages, 12 figures, submitted to a special issue of Acta Mathematica Vietnamica
- Subjects :
- Integrable system
Dynamical systems theory
General Mathematics
010102 general mathematics
Geometry
Dynamical Systems (math.DS)
58K50, 37J35, 58K45, 37J15
01 natural sciences
Puiseux series
Cohomology
Monodromy
Poisson manifold
0103 physical sciences
FOS: Mathematics
Vector field
010307 mathematical physics
0101 mathematics
Mathematics - Dynamical Systems
37J35 (37J15 58K45 58K50)
Mathematics::Symplectic Geometry
ComputingMilieux_MISCELLANEOUS
Symplectic geometry
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 02514184 and 23154144
- Database :
- OpenAIRE
- Journal :
- Acta Mathematica Vietnamica, Acta Mathematica Vietnamica, Springer Singapore, 2013, 38 (1), p. 79-106. ⟨10.1007/s40306-012-0005-9⟩, Acta Mathematica Vietnamica, 2013, 38 (1), p. 79-106. ⟨10.1007/s40306-012-0005-9⟩
- Accession number :
- edsair.doi.dedup.....e3eaf7993cd152ffca0f73ed3bc490f0
- Full Text :
- https://doi.org/10.1007/s40306-012-0005-9⟩