Back to Search Start Over

Quenched mass transport of particles towards a target

Authors :
Bruno Bouchard
Idris Kharroubi
Boualem Djehiche
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Sweden] (KTH)
Stockholm University
Laboratoire de Probabilités, Statistiques et Modélisations (LPSM UMR 8001)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)
Swedish Research Council (VR) Grant no. 2016-04086 is gratefully acknowledged
ANR-15-CE05-0024,CAESARS,Contrôle et simulation des systèmes électriques, interaction et robustesse(2015)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
Journal of Optimization Theory and Applications, Journal of Optimization Theory and Applications, Springer Verlag, 2020, ⟨10.1007/s10957-020-01704-y⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; We consider the stochastic target problem of finding the collection of initial laws of a mean-field stochastic differential equation such that we can control its evolution to ensure that it reaches a prescribed set of terminal probability distributions, at a fixed time horizon. Here, laws are considered conditionally to the path of the Brownian motion that drives the system. We establish a version of the geometric dynamic programming principle for the associated reachability sets and prove that the corresponding value function is a viscosity solution of a geometric partial differential equation. This provides a characterization of the initial masses that can be almost-surely transported towards a given target, along the paths of a stochastic differential equation. Our results extend [16] to our setting.

Details

Language :
English
ISSN :
00223239 and 15732878
Database :
OpenAIRE
Journal :
Journal of Optimization Theory and Applications, Journal of Optimization Theory and Applications, Springer Verlag, 2020, ⟨10.1007/s10957-020-01704-y⟩
Accession number :
edsair.doi.dedup.....e3e6e12d45ca0e107679162d61e4aa2d